ПОЛУПРОВОДНИКИ

в-ва, характеризующиеся увеличением электрич. проводимости с ростом т-ры. Хотя часто П. определяют как в-ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 -104 Ом -1 см -1) и для хороших диэлектриков (s ! 10-12 Ч 10-10 Ом -1 см -1), сама величина электрич. проводимости не играет определяющей роли в полупроводниковых св-вах в-ва. На электрич. проводимость П оказывает влияние кроме т-ры сильное электрич. поле, давление, воздействие оптич. и ионизирующего излучения, наличие примесей и др. факторы, способные изменять структуру в-ва и состояние электронов. Это обстоятельство играет решающую роль в многочисленном и разнообразном использовании П.

Полупроводниковые св-ва могут наблюдаться как в кристаллич. в-вах, так и в неупорядоченных системах - твердых аморфных в-вах (стеклах) и жидкостях. При этом решающим является характер хим. связи между частицами в ближнем порядке (первая координац. сфера). Существуют П. с любым типом хим. связи, кроме чисто металлической и чисто ионной (т. е. ковалентной, ковалентно-металлич., ковалентно-ионной и т. п.), причем ковалентная составляющая связи является обычно преобладающей. Широкое практич. применение получили П., являющиеся простыми в-вами (Ge, Si и др.), а также хим. соединения элементов III гр. периодич. системы с элементами V гр., напр. GaAs, GaP, InAs, CdTe и т. п. (бинарные П.). Все такие в-ва имеют кристаллич. решетку, подобную решетке алмаза, и наз. алмазоподобными П. В Ge и Si в кристаллич. состоянии реализуется классич. двухэлектронная ковалентная связь. образованная перекрыванием sp3 -гибридных орбиталей соседних атомов (см. Гибридизация атомных орбиталей). В соответствии с симметрией sp3 -гибридных орбиталей расположение атомов в первой координац. сфере отвечает правильному тетраэдру.Такова же первая координац. сфера и у алмазоподобных П., однако в их структуре каждая ковалентная связь имеет ковалентно-ионный характер из-за заметной разности электроотрицательностей соседних атомов.

Повышение т-ры, а также др. внеш. воздействия (облучение светом или сильное электрич., поле) могут вызвать разрыв ковалентной связи, ионизацию атомного остова и образование своб. электрона. Этот электрон в условиях непрерывного обмена валентными электронами между атомами кристалла может переходить из ячейки в ячейку и переносить с собой отрицат. заряд, к-рый повсюду является избыточным, т. е. своб. электрон становится электроном проводимости. Недостаток электрона у разорванной ковалентной связи становится блуждающей по кристаллу дыркой, с к-рой связан единичный положит. заряд.

Электроны проводимости и дырки-два типа своб. носителей заряда в П. В идеальных кристаллах их концентрации равны, т. к. превращение одного из валентных электронов в электрон проводимости неизбежно вызывает появление дырки. Электропроводность П. ст, обусловленная электронами атомов данного в-ва (т. наз. собственная проводимость), определяется помимо концентрации носителей пих подвижностью m-отношением скорости направленного движения, вызванного электрич. полем (дрейфовой скоростью) u др, к напряженности поля Е:

ПОЛУПРОВОДНИКИ фото №1

(е-элементарный электрич. заряд).

Подвижность разных носителей в идеальном кристалле определяется процессами рассеяния электронов на тепловых колебаниях решетки, поэтому ц сильно зависит от т-ры. При 300 К подвижность носителей в твердых П. варьируется в широких пределах от 105 см 2/с до 10-3 см 2/с и меньше. В реальных кристаллах при пониж. т-рах, как правило, преобладает рассеяние носителей на дефектах кристаллич. структуры.

Примесная проводимость. В реальных кристаллах источниками своб. носителей заряда (носителей тока) м. б. дефекты кристаллич. структуры, напр. междоузельные атомы, вакансии, а также отклонения от стехиометрич. состава. Примеси и дефекты делятся на доноры и акцепторы. Доноры отдают в объем П. избыточные электроны, создавая электронную проводимость (n-типа). Акцепторы захватывают валентные электроны собств. атомов П., в результате чего образуются дырки и возникает дырочная проводимость (р-типа). Типичными донорами в Ge и Si являются примесные атомы элементов V гр. (Р, As, Sb). В узле кристаллич решетки 4 из 5 валентных электронов такого атома образуют ковалентные связи с соседними атомами Ge или Si, а 5-й электрон оказывается слабо связанным с примесным ионом. Энергия ионизации примеси мала (~0,01 эВ в Ge и 0,04 эВ в Si), поэтому уже при 77 К в П. появляются электроны проводимости в концентрации, определяемой содержанием примеси

Аналогично атомы III гр. (В, Al, Ga, In)-типичные акцепторы в Ge и Si. Дырка, к-рая остается в месте захваченного примесью валентного электрона Ge или Si, очень слабо связана с примесным ионом и при не очень низких т-рах легко превращ. в своб. носитель заряда (носитель тока). Во мн. бинарных П. типа AIVBVI источниками дырок являются вакансии атомов AIV, а вакансии BVI источниками электронов проводимости. Электропроводность П., определяемая электронами примесных атомов, наз. примесной проводимостью, а введение определенных примесей для получения П. с разл. требуемыми св-вами-легированием П.

Зонная теория объясняет полупроводниковые св-ва твердых тел на основе одноэлектронного приближения и распределения электронных энергетич. уровней в виде разрешенных и запрещенных зон (см. Твердое тело).Энергетич. уровни электронов, участвующих в ковалентной связи, образуют верхнюю из заполненных разрешенных зон (валентную зону). Следующая по энергии разрешенная зона, уровни к-рой не заполнены электронами,-зона проводимости. Энергетич. интервал между "дном" Е с > (минимумом энергии) зоны проводимости и "потолком" Еу (максимумом) валентной зоны наз. шириной запрещенной зоны DE (см. рис.). Для разных П. ширина запрещенной зоны меняется в широких пределах. Так, при T: 0 К DE = 0,165 эВ в PbSe и 5,6 эВ в алмазе.

ПОЛУПРОВОДНИКИ фото №2

Валентная зона (кружки с плюсом дырки) и зона проводимости (кружки с минусом-электроны проводимости): E с -дно зоны проводимости, V-> потолок валентной зоны, DE- ширина запрещенной зоны, D и A-донорные и акцепторные уровни соответственно.

Тепловое движение переносит часть электронов в зону проводимости; в валентной зоне при этом появляются дырки - квантовые состояния, не занятые электронами. Обычно электроны занимают уровни, расположенные вблизи дна Е с зоны проводимости, а дырки-уровни, расположенные вблизи потолка V валентной зоны. Расстояния от этих уровней соотв. до Е с и Е V порядка энергии теплового движения kТ, т. е. гораздо меньше ширины разрешенных зон (k-постоянная Больцмана). Локальные нарушения идеальности кристалла (примесные атомы, вакансии и др. дефекты) могут вызвать образование разрешенных локальных уровней энергии внутри запрещенной зоны.

При т-рах вблизи О К все собств. электроны П. находятся в валентной зоне, целиком заполняя ее, а примесные электроны локализованы вблизи примесей или дефектов, так что своб. носители заряда отсутствуют. С повышением т-ры тепловое движение "выбрасывает" в зону проводимости преим. электроны примесных атомов-доноров, поскольку энергия ионизации донора меньше ширины запрещенной зоны. Концентрация электронов в зоне проводимости при этом во много раз больше концентрации дырок в валентной зоне. В таких условиях электроны наз. основными носителями в П. n-типа, аналогично дырки - основными носителями в П. р-типа. После полной ионизации всех доноров доминирующим процессом оказывается выброс из валентной зоны в зону проводимости собств. электронов П При нек-рой т-ре их концентрация в зоне проводимости становится сравнимой с концентрацией примесных электронов, а потом и во мн. раз большей. Это температурная область собств. проводимости П., когда концентрации электронов пи дырок рпрактически равны.

Возникновение пары электрон проводимости-дырка наз. генерацией носителей заряда. Возможен и обратный процесс-рекомбинация носителей заряда, приводящая к возвращению электрона проводимости в валентную зону и исчезновению дырки. Рекомбинация носителей может сопровождаться выделением избыточной энергии в виде излучения, что лежит в основе полупроводниковых источников света и лазеров

Электроны проводимости и дырки, возникновение к-рых явилось следствием тепловых флуктуации в условиях тер-модинамич. равновесия, наз. равновесными носителями заряда. При наличии внеш. воздействия на П. (освещение, облучение быстрыми частицами, наложение сильного электрич. поля) может происходить генерация носителей заряда, приводящая к появлению избыточной (относительно термодинамически равновесной) их концентрации. При появлении в П. неравновесных носителей возрастает число актов рекомбинации и захвата электрона из зоны проводимости на примесный уровень в запрещенной зоне ("захват" носителей). После прекращения внеш. воздействия концентрация носителей приближается к равновесному значению.

p-n -Переход в П. В объеме одного и того же П. возможно создание двух областей с разными типами проводимости, напр. легированием донорной примесью (p-область) и акцепторной примесью (n-область). Т к. в р-области концентрация дырок выше, чем в n-области, происходит диффузия дырок из р-области (в ней остаются отрицательно заряженные акцепторные ионы) и электронов из л-области (в ней остаются положительно заряженные донорные ионы). На границе областей с р- и n-проводимостью образуется двойной слой пространств, заряда, и возникающая электрич. разность потенциалов препятствует дальнейшей диффузии осн. носителей тока. В условиях теплового равновесия полный ток через p-n- переход равен нулю. Внеш. электрич. поле нарушает равновесие, появляется отличный от нуля ток через переход, к-рый с ростом напряжения экспоненциально возрастает. При изменении знака приложенного напряжения ток через переход может изменяться в 105-106 раз, благодаря чему p-n- переход является вентильным устройством, пригодным для выпрямления переменного тока (полупроводниковый диод). На св-вах p-n- перехода основано применение П. в качестве разл. рода датчиков - т-ры, давления, освещения, ионизирующих излучений (см. Радиометрия).

Классификация. В соответствии с зонной теорией различие между П. и диэлектриками чисто количественное - в ширине запрещенной зоны. Условно считают, что в-ва с DE > 2 эВ являются диэлектриками, с DE < 2 эВ - полупроводниками. Столь же условно деление П. на узкозонные (DE < 0,1 эВ) и широкозонные. Важно, что один и тот же по хим. составу материал в зависимости от внеш. условий (прежде всего т-ры и давления) может проявлять разные св-ва. Наблюдается определенная зависимость между концентрацией электронов проводимости и устойчивостью кристаллич. структуры П. В частности, алмазоподобная структура устойчива до тех пор, пока в зоне проводимости еще остаются вакантные энергетич. уровни. Если все они оказываются занятыми и имеет место вырождение энергетических уровней, первая координац. сфера, а за ней и весь кристалл претерпевают перестройку с образованием более плотной структуры, характерной для металлов. При этом концентрация электронов проводимости перестает расти с т-рой и собств. проводимость П. падает. Классич. примером является олово, устойчивая полиморфная модификация к-рого (белое олово) при комнатной т-ре является металлом, а стабильное при т-рах ниже 13°С серое олово (ct-Sn)- узкозонный П. С повышением т-ры и соответствующим изменением концентрации своб. электронов характерная для a-Sn алмазоподобная структура переходит в структуру с более плотной упаковкой атомов, свойственной металлам. Аналогичный переход П.-металл наблюдается при высокой т-ре у Ge, Si и алмазоподобных бинарных П., к-рые при плавлении теряют полупроводниковые св-ва.

В рамках зонной теории аморфные (стеклообразные и жидкие) П. можно рассматривать как немолекулярные системы, в к-рых из-за многообразия положений и взаимных ориентации атомов и атомных групп положения дна (по энергии) зоны проводимости и потолка валентной зоны испытывают флуктуации порядка ширины запрещенной зоны. В силу этого среднестатистич. энергетич. (потенциальный) рельеф краев зон имеет сложную форму, электроны в зоне проводимости и дырки в валентной зоне локализуются в потенц. ямах ("каплях"), разделенных разновысокими потенц. барьерами. Проводимость в таких системах обусловлена спонтанным перебросом носителей тока через барьер или квантовым туннелированием. К таким П. относятся халькогенидные стекла, сохраняющие полупроводниковые св-ва в жидком состоянии.

В кристаллических П., имеющих цепочечную (Se, Те) или слоистую структуру (нек-рые модификации As и Sb), зонная структура, а следовательно, ширина запрещенной зоны различны в разных кристаллографич. направлениях, что обусловлено неодинаковым характером хим. связи. Выделяют гомодесмические П. с высокосимметричной структурой (Ge, Si, алмазоподобные бинарные и многокомпонентные соед.) и гетеродесмические П. (цепочечной и слоистой структур, напр. Se, Те, GeAs, GeAs2). Сама величина собств. проводимости П. и ее температурная зависимость в разных кристаллографич. направлениях для этих в-в (или фаз) будут отличаться.

П. и периодическая система элементов. Элементы, проявляющие полупроводниковые св-ва в виде простых в-в, расположены компактной группой в периодич. системе (в табл. они выделены сплошной ломаной линией). Все они являются p-элементами, в атомах к-рых постепенно заполняются электронами p-орбитали. Собств. проводимость проявляется у в-в, структура к-рых допускает образование насыщ. (двухцентровых) ковалентных связей. В простых в-вах с валентными s- и p-электронами выполняется т. наз. правило октета, согласно к-рому каждый атом имеет (8 Ч N) ближайших соседей (N Ч номер группы). Так, в П. группы IVa координац. число равно 4 (тетраэдр). У полупроводниковых модификаций простых в-в группы Va-P, As, Sb-координац. число равно 3, что способствует формированию слоистых структур. S, Se, Те (гр. VIa) в полупроводниковом состоянии имеют координац. число 2 и образуют линейные, цепочечные структуры, связанные в трехмерную сетку силами Ван-дер-Ваальса. У полупроводниковой модификации I (гр. VIIa) координац. число равно 1 и сохраняется мол. структура с бинарными молекулами I2 в узлах кристаллич. решетки. В периодич. системе все элементы, образующие полупроводниковые фазы, кроме В (гр. IIIa), расположены правее т. наз. границы Цинтля, к-рая разделяет элементы с дефицитом валентных электронов (менее 4 электронов на атом) и элементы, у к-рых достаточное число валентных электронов для образования ковалентных связей в структурах простых в-в в соответствии с правилом октета.

ПОЛУПРОВОДНИКИ фото №3

Граница Цинтля

В бинарных соед. между элементами, расположенными левее границы Цинтля, и элементами, стоящими вправо от нее, реализуются полярные ковалентные связи. Обычно более электроотрицат. атом наз. "анионообразователем", более электроположительный - "катионообразователем". Эти соед. проявляют полупроводниковые св-ва в том случае, если орбитали анионообразователя полностью заселены электронами. Полупроводниковые соед. подчиняются модифицированному правилу октета, согласно к-рому отношение числа п е валентных электронов, приходящихся на одну формульную единицу, к числу п а > атомов элемента групп IVa-VIIa равно 8. Состав таких соед. строго подчиняется правилам формальной валентности. Наиб. интерес представляют бинарные алмазоподобные фазы, в состав к-рых входят элементы групп, равноотстоящих от гр. IVa. Они образуют т. наз. изоэлектронные ряды Si, Ge и a-Sn, члены к-рых представляют бинарные соед., в к-рых приходится по 8 валентных электронов на одну формульную единицу: ряд Si: A1P MgS NaCl ряд Ge: GaAs ZnSe CuBr ряд a-Sn: InSb CdTe Agl

Из перечисленных соед. большинство имеет тетраэдрич. структуру (координац. число 4), лишь MgS и NaCl кристаллизуются в структуре с координац. числом 6, характерной для бинарных ионных кристаллов, и являются диэлектриками. Полупроводниковые соед. могут образовываться и при др. сочетаниях элементов, находящихся по разные стороны границы Цинтля (ПОЛУПРОВОДНИКИ фото №4и т. п.).

Существуют фазы, в структуре к-рых в первой координац. сфере реализуются связи не только между разными атомами, но и между одинаковыми, в силу чего их состав не подчиняется правилам формальной валентности. Если ка-тионообразователем является элемент групп Ia-IIIa и в структуре фазы имеются хим. связи между атомами этого элемента, то фаза является металлидом (напр., Сu3 Р, Cu3As). Если же катионообразователь - элемент групп IVa или Va, наличие связи между его атомами не приводит к появлению металлич. св-в. П. являются и т. наз. анионо-избыточные фазы со связями между атомами-анионообра-зователями. Т. обр., П. являются GeAs и GeAs2 (одна связь GeЧGe и одна связь AsЧAs на одну формульную единицу). Принадлежность бинарной фазы к П. регламентируется формальным правилом Музера-Пирсона (еще одна модификация правила октета): п е/п а + В а =>8, где В а -число связей между анионообразователями. В структуре, удовлетворяющей этому правилу, координац. сферы каждого компонента формируются с помощью двухэлектрон-ных связей.

Представления, основанные на правиле насыщения первой координац. сферы, оказались плодотворными для прогнозирования полупроводниковых св-в большого числа соед., не только бинарных, но и многокомпонентных. Путем замещения компонентов бинарного полупроводникового соед. атомами такой же валентности (изовалентное замещение) или др. валентности (гетеровалентное замещение) можно получать непрерывные и ограниченные твердые р-ры с полупроводниковыми св-вами. Примером могут служить твердые р-ры GaP-GaAs, AlP-GaP и др. Тройные полупроводниковые соед. получают путем замещения двух атомов одного сорта в соед. типа AIIIBV на два атома с той же суммарной валентностью. Напр., при замещении двух атомов алюминия в А1Р (суммарная валентность 3 + 3 = 6 )на атомы Mg и Si (та же суммарная валентность 2 + 4 = 6) получают алмазоподобное тройное полупроводниковое соед. MgSiP2. Подобными фазами являются ZnGeAs2, CdSnP2 и т. п., это т. наз. изоэлектрон-ное замещение.

Особую группу в-в, способных проявить полупроводниковые св-ва, составляют соед. переходных металлов с элементами, расположенными справа от границы Цинтля. Эти соед. чрезвычайно многообразны по составу и св-вам из-за поливалентности переходных d- и f-металлов. В ряде случаев в реальных структурах возможно координац. насыщение хотя бы одного компонента вследствие образования двух-электронных ковалентных связей. В результате снимается вырождение энергетич. уровней кристалла и в-во становится П. Поскольку все элементы групп IVa--VIa принадлежат к числу достаточно высоко электроотрицательных, выполнение отмеченного выше условия возможно у халькоге-нидов, фосфидов, арсенидов, силицидов, особенно высших, т. е. содержащих достаточное кол-во анионообразователей в одной формульной единице. Полупроводниковыми св-вами обладают халькогениды состава MX и МХ 2, пник-тидьт (фосфиды и арсениды) этого же состава, высшие силициды (если они не являются фазами внедрения). Карбиды состава М 2 С, МС и нек-рые другие, как правило, метал-лоподобны вследствие того, что они являются фазами внедрения, т. е. у них сохраняется кристаллич. каркас металлич. компонента и, следовательно, преобладает металлич. характер хим. связи. Германиды, станниды, многие (даже высшие) антимониды также представляют собой металлы, поскольку входящие в их состав анионообразователи недостаточно электроотрицательны.

Характерной особенностью практически всех бинарных соед. переходных металлов с элементами групп IVa-VIa с полупроводниковыми св-вами является наличие вырождения энергетич. уровней при низких т-рах. Так, даже такие ярко выраженные П., как высшие силициды CrSi2, ReSi2, Mn4Si7, обнаруживают положит. коэффициент электрич. проводимости только при высоких т-рах. Это связано не столько с наличием легко ионизуемых примесей, сколько с дополнит. возможностью ионизации атомного остова переходного металла, обусловленной его поливалентностью. В ряде случаев этот процесс затягивается вплоть до т-ры плавления материала, к-рый так и не становится собственным П.

Органические П. принципиально отличаются от неорганических П. Все твердые неорганические П. образуют координац. соединения, в то время как органические П.- молекулярные кристаллы. Они так же, как и неорганические П., обладают положит. температурным коэф. проводимости, но механизм проводимости иной. Для органических П. характерны многоцентровые связи, характеризующиеся делокализацией p-электронов и проявлением коллективного электронного взаимод. по системе сопряжения. Делокализация электронов сопровождается выигрышем энергии, наз. энергией сопряжения; это приводит, в частности, к уменьшению энергетич. щели DЕмежду основным и низшим возбужденным состояниями p-электронов по мере увеличения числа сопряженных связей в молекуле. В полимерах с системой сопряжения в осн. цепи макромолекулы DЕм. б. порядка энергии теплового движения kT. Внеш. воздействие (гл. обр. освещение) вызывает возбуждение в системе p-электронов, к-рое может мигрировать по кристаллу и при распаде (на дефектах структуры, примесных атомах, а также при взаимод. друг с другом) дает своб. носители заряда. Проводимость в органических П. обеспечивается гл. обр. перескоками электронов между состояниями с разной энергией, причем дефицит энергии покрывается за счет энергии тепловых колебаний атомов (прыжковая проводимость). С этим связана характерная температурная зависимость органических П.: при умеренно низких т-рах, когда доминируют прыжки между соседними состояниями, между уд. электрич. сопротивлением r и т-рой Тнаблюдается зависимость ln r ~ T-1. С понижением т-ры длина прыжка увеличивается и ln r ~ Т n( п <1).

Различают четыре вида органических П.: 1) низкомолекулярные соед. с конденсир. ароматич. ядрами: нафталин, антрацен, пирен, перилен и т. п. и их производные; 2) соед., содержащие помимо конденсированных ароматич. ядер открытоцепные участки (красители и пигменты типа хлорофилла, b-каротина); 3) полимерные материалы (полиэтилен, биополимеры); 4) молекулярные комплексы с переносом заряда, в к-рых проводимость осуществляется путем перехода электрона от молекулы-донора к молекуле-акцептору (комплексы ароматич. соед. с галогенами). Мн. органические П. являются биологически активными в-вами, что, по-видимому, неразрывно связано с особенностями их электрич. проводимости.

Лит.: Органические полупроводники, 2 изд., М., 1968; Горюнова Н. А., Химия алмазоиодобных полупроводников, Л., 1963; У гай Я. А., Введение в химию полупроводников, 2 изд., М., 1975. Я. А. Угай, В. З. Анохин.


Смотреть больше слов в «Химической энциклопедии»

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ →← ПОЛУМЕТАЛЛЫ

Смотреть что такое ПОЛУПРОВОДНИКИ в других словарях:

ПОЛУПРОВОДНИКИ

        широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ По... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ, -ов, ед. -ник, -а, м. (спец.). Вещества,электропроводность к-рых при комнатной температуре меньше, чем у металлов, ибольше, чем у диэлектриков. II прил. полупроводниковый, -ая, -ое. П.радиоприемник (на полупроводниках).... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ, широкий класс веществ, характеризующихся значениями электропроводности а, промежуточными между электропроводностью металлов (о~106 - ... смотреть

ПОЛУПРОВОДНИКИ

широкий класс в-в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106—104 Ом-1 ... смотреть

ПОЛУПРОВОДНИКИ

После изобретения в 1904 г. Дж. Флемингом двухэлектродной лампы?диода и Л. Де Форестом в 1906 г. трехэлектродной лампы?триода в радиотехнике произошла революция. Эти изобретения позволили усиливать не только телеграфные сигналы, но и перейти к радиотелефонии – передаче по радио человеческого голоса. Помимо этого, они позволили усиливать высокочастотные колебания. Началось бурное развитие радиотехники. Но одновременно с ним выявились недостатки применения вакуумных электронных приборов. Электронная лампа имеет небольшой срок службы. Приняв средний срок службы лампы за 500 часов, при количестве ламп в одном устройстве 2000 штук в среднем каждые 15 минут следовало бы ожидать отказа по крайней мере 1 лампы. Для обнаружения неисправности следовало проверить как минимум несколько сотен ламп. Самой уязвимой частью ламп является нить накала. При включении и выключении прибора нить поочередно раскаляется и охлаждается, что повышает вероятность ее перегорания. Для разогрева лампы требуется мощность в сотые доли ватта. Помноженная на количество ламп потребная мощность достигает нескольких сотен, а иногда тысяч ватт. Недостатки электронных ламп особенно остро выявились в конце 40?х – начале 50?х гг. прошлого века с появлением первых электронно?вычислительных машин. Их надежность и размеры определялись именно размерами, энергетической емкостью и надежностью используемых в них вакуумных ламп. Выход из кризиса открыли полупроводниковые приборы, которые, несмотря на свои недостатки, имели явные преимущества по сравнению с лампами: небольшие размеры, мгновенная готовность к работе ввиду отсутствия нити накала, отсутствие хрупких стеклянных баллонов. Эти необходимые в то время свойства побудили к поиску способов устранения недостатков полупроводников. Исследования проводимости различных материалов начались непосредственно в XIX в. сразу после открытия гальванического тока. Первоначально их делили на две группы: проводники электрического тока и диэлектрики, или изоляторы. К первым относятся металлы, газы и растворы солей. Их способность проводить ток объясняется тем, что их электроны сравнительно легко отрываются от атома. Особый интерес представляли те из них, которые обладали низким электрическим сопротивлением и могли применяться для передачи тока (медь, алюминий, серебро). К изоляторам относятся такие вещества, как фарфор, керамика, стекло, резина. Их электроны прочно связаны с атомами. Позже были открыты материалы, чьи свойства не подходили полностью ни под одну из вышеназванных категорий. Эти вещества получили название полупроводников, хотя они вполне заслуживали и названия «полуизоляторы». Они проводят ток несколько лучше, чем изоляторы, и значительно хуже проводников. К полупроводникам относится большая группа веществ, среди которых графит, кремний, бор, цезий, рубидий, галлий, кадмий и различные химические соединения – окислы и сульфиды, большинство минералов и некоторые сплавы металлов. Особенно велико значение германия, а также кремния, благодаря которым произошла поистине техническая революция в электротехнике. Изучение свойств полупроводников начались, когда возникла потребность в новых источниках электричества. Это заставило исследователей обратиться к изучению явлений, связанных с образованием так называемой контактной разности потенциалов. Было замечено, в частности, что многие материалы, не являющиеся проводниками тока, электризуются при соприкосновении между собой. Первые опыты в этом направлении проводились в XIX в. Г. Дэви и А. С. Беккерелем. Еще одно направление в исследовании полупроводников появилось в процессе изучения проводимости таких веществ, как минералы, соединения металлов с серой и кислородом, кристаллы, различные диэлектрики и т. п. В этих работах исследовалась величина проводимости и влияние на нее температуры. Исследование в середине XIX в. ряда колчеданов и окислов показало, что с увеличением температуры их проводимость быстро возрастает. Многие кристаллы (горный хрусталь, каменная соль, железный блеск) проявляли анизотропию (неодинаковость свойств внутри тела) по отношению к электропроводности. В 1907 г. Пирс открыл униполярную (одностороннюю) проводимость в кристаллах карборунда: их проводимость в одном направлении оказалась примерно в 4000 раз большей, чем в противоположном. В ходе этих исследований было также установлено, что существенное влияние на проводимость полупроводников оказывают содержащиеся в них примеси. В 1907–1909 гг. Бедекер заметил, что проводимость йодистой меди и йодистого калия существенно возрастает, примерно в 24 раза, при наличии примеси йода, не являющегося проводником. Во II половине XIX в. были открыты еще 2 явления, связанные с полупроводниками – фотопроводимость и фотоэффект. Было обнаружено, что световые лучи влияют на проводимость отдельных веществ, среди которых особое место занимал селен. Влияние света на проводимость селена впервые открыл в 1873 г. Мэй, о чем сообщил В. Смиту, которому иногда приписывают честь этого открытия. Необычные свойства селена использовались в ряде приборов. Так, В. Сименс соорудил физическую модель глаза с подвижными веками и с селеновым приемником на месте сетчатой оболочки. Его веки закрывались, когда к нему подносили свечу. Тот же Сименс, используя свойства селена, построил другой оригинальный физический прибор – фотометр с селеновым приемником. Корн пытался построить телефонограф, служащий для передачи изображений на расстояние. К другому сходному явлению, связанному с действием света на материалы, можно отнести фотоэффект. Впервые это явление открыл в I половине XIX в. А. С. Беккерель. Сущность его наблюдений сводилась к тому, что два одинаковых электрода, помещенные в одном электролите при одинаковых условиях, обнаруживали разность потенциалов, когда на один из них направляли поток света. В 1887 г. Герц заметил подобное же явление в газовой среде. Он установил, что ультрафиолетовый свет, испускаемый одной искрой, облегчает прохождение разряда в соседнем искровом промежутке, если при этом освещается отрицательный электрод. Наблюдение Герца, изученное затем А. Г. Столетовым, привело к открытию фотоэлектрического эффекта, заключающегося в испускании телами отрицательного электричества под влиянием света. В радиотехнике вначале нашли применение некоторые окислы, в частности кристаллы цинкита и халькопирита. Было обнаружено, что они обладают свойством выпрямлять электрический ток. Это позволило применять их для детектирования радиосигналов – отделения тока звуковой частоты от несущих сигналов. В первых любительских радиоприемниках начала XX в. для детектирования использовались настоящие полупроводники. Но обращение с ними требовало больших усилий. Для приема сигналов требовалось попасть тонкой иглой в определенную точку на кристалле. Это было целое искусство и те, кто им владел, ценились на вес золота. Замена кристаллов лампами значительно упростила работу радистов. Низкая надежность работы радиоустройств с большим количеством вакуумных электронных ламп в начале 20?х годов XX в. заставила вспомнить, что кристаллический детектор, подобный углесталистому детектору А. С. Попова, обладает не менее широкими возможностями, чем электронная лампа. В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил возможность получения незатухающих колебаний с помощью полупроводникового кристаллического диода. Свой прибор Лосев назвал кристодином. На его основе ученый создал различные полупроводниковые усилители для радиоприемников. Многие предрекали, что кристаллы со временем займут место вакуумных ламп. Но в 1920–1930?е гг. этого не произошло. Лампы удовлетворяли тогдашние запросы, постепенно раскрывались их новые достоинства и возможности. А полупроводниковые кристаллы в то время лишь начали изучать, технологи не имели возможности производить чистые, лишенные примесей кристаллы. Многие годы физики исследовали процессы, протекающие в полупроводниках на уровне микроструктуры, и на основе этих исследований пытались объяснять их свойства. Оказалось, что так же, как и в изоляторах, в полупроводниках все электроны прочно связаны с атомами. Но эта связь непрочна, и при нагреве или под действием света некоторым электронам удается вырваться из притяжения атомов. С появлением свободных электронов электрическая проводимость полупроводников резко возрастает. В отличие от проводников, носителями тока в полупроводниках могут быть не только электроны, но и «дырки» – места на орбите положительно заряженных частиц – ионов, образовавшихся после потери электрона. Положительный заряд этих частиц стремится захватить недостающий электрон у одного из соседних атомов. Таким образом, «дырка» путешествует по полупроводнику, переходя от атома к атому. Вместе с ней путешествует и положительный заряд, равный по значению отрицательному заряду электрона. Один и тот же полупроводник может обладать либо электронной, либо дырочной проводимостью. Все зависит от химического состава введенных в него примесей. Так, небольшая добавка в германий примесей, богатых электронами, например мышьяка или сурьмы, позволяет получить полупроводник с электронной проводимостью, так называемый полупроводник n?типа (от лат. negativus – отрицательный). Добавка же алюминия, галлия или индия приводит к избытку «дырок» и образованию дырочной проводимости. Такие проводники называются проводниками р?типа (от лат. positivus – положительный). Развитие полупроводников в 20–30?е гг. прошлого века позволило создать полупроводниковые приборы, термоэлектрогенераторы, сегнетоэлектрические и фотоэлектрические приборы. В 1929 г. советский ученый А. Ф. Иоффе высказал мысль о возможности получения с помощью термоэлектрического генератора из полупроводников электроэнергии с КПД в 2,5–4 %. Уже в 1940–1941 гг. в Советском Союзе были получены полупроводниковые термоэлементы с КПД в 3 %. Во второй половине 20?х гг. XX в. были созданы твердые выпрямители переменного тока, представлявшие собой окисленную медную пластинку. Позже их стали делать из селена. Серьезным недостатком первых твердых выпрямителей были большие тепловые потери. Использование новых веществ, в частности германия, позволило резко их снизить. Были созданы опытные образцы выпрямителей переменного тока из германия и аналогичных полупроводниковых материалов с КПД до 98–99 %. Полупроводниковые выпрямители удобны в эксплуатации, поскольку они миниатюрны и прочны, не требуют тока накала, потребляют немного энергии и долговечны. Изучение свойств кристаллов показало, что выпрямление и детектирование тока происходит не на границе кристалла и металла, а вследствие образования на поверхности кристалла оксидной пленки. Для выпрямления было необходимо, чтобы пленка также обладала полупроводниковыми свойствами. Причем ее проводимость должна была отличаться от проводимости самого кристалла: если кристалл обладал n?проводимостью, то пленка должна иметь р?проводимость – и наоборот. В этом случае кристалл и пленка образуют полупроводниковый вентиль, пропускающий ток только в одну сторону. Постепенно ученые научились получать чистые кристаллы кремния и германия, добавляя затем в них нужные примеси, создающие необходимый тип проводимости. В начале Второй мировой войны для обеспечения приема и выпрямления сантиметровых волн в США для радиолокации стали примяться германиевые и кремниевые детекторы, обладавшие большой устойчивостью. Вскоре после войны были разработаны полупроводниковые усилители и генераторы. 1 июля 1948 г. в газете «Нью?Йорк тайме» появилась заметка о демонстрации фирмой «Белл телефон лабораториз» прибора под названием «транзистор». Он представлял собой полупроводниковый триод, несколько напоминавший по конструкции кристаллические детекторы 20?х годов. Транзистор создали физики Дж. Бардин и У. Браттейн. Его устройство было простым: на поверхности пластинки из германия, с одним общим электродом?основанием, были помещены два близко расположенных металлических стержня, один из которых был включен в пропускном, а другой – в запорном направлении. При этом пластинка обладала р?проводимостью, а стержни – n?проводимостью. Концентрация случайных примесей в пластинке германия не превышала 10_6 %. В 1951 г. У. Шокли создал первый плоскостной триод, в котором контакт между зонами с п– и р?проводимостью осуществлялся по всей торцовой поверхности кристаллов. У него, как и у точечного транзистора, был предшественник. В свое время радиолюбители, чтобы избавиться от необходимости искать необходимую точку на кристаллическом детекторе, решили перейти к плоскостным контактам, создав плоскостной диод. В нем использовались кристаллы цинкита и халькопирита. Но он обладал малой надежностью, поскольку из?за плохой поверхности окислов выпрямление осуществлялось лишь в отдельных точках. В 1956 г. Бардин, Браттейн и Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие транзисторного эффекта. Надежно работающие плоскостные полупроводниковые диоды и триоды были созданы только после изучения свойств полупроводниковых кристаллов и овладения технологией изготовления сверхчистых материалов. Преимуществом плоскостных контактов по сравнению с точечными является их способность пропускать более сильный ток. Но при этом они имеют значительно большую паразитную емкость, вред которой возрастает с повышением частоты сигналов. Поэтому плоскостные диоды и триоды применяются для обработки и усиления низкочастотных сигналов, а точечные, называемые также кристаллическими детекторами, для детектирования слабых сигналов высоких и сверхвысоких частот. Область применения полупроводников не ограничивалась радиотехникой. Еще в 1932 г. А. Ф. Иоффе создал из закиси меди, а затем из селена фотоэлементы, вырабатывавшие при их освещении электрический ток без помощи внешних источников энергии. Однако их КПД при использовании солнечной энергии не превышал 0,05–0,1 %. Но уже перед Великой Отечественной войной в СССР были созданы фотоэлементы из сернистого таллия и сернистого серебра с КПД до 1 %. В 1954 г. был создан кремниевый фотоэлемент. В этом же году впервые была построена солнечная батарея, состоявшая из большого числа кремниевых фотоэлементов. В начале 1955 г. были созданы фотоэлементы с КПД до 6 %. Современные фотоэлементы имеют КПД до 20 % и выше. Располагая полупроводниковый диод рядом с радиоактивным материалом, получают атомную батарею, которая может вырабатывать электрическую энергию на протяжении многих лет. На основе полупроводников были созданы фотодиоды. В сочетании с электрическими счетчиками они ведут учет движущихся объектов – от производимых деталей до пассажиров в метро. Приборы, созданные с применением фотодиодов, могут определять бракованные изделия на конвейере и выключать оборудование, если в его опасную зону попадают руки рабочих. Создание приборов на основе полупроводников произвело в середине XX в. техническую революцию. Дальнейшее их развитие привело к созданию интегральных микросхем, появлению новых поколений электронно?вычислительных машин и персональных компьютеров. Сейчас ни одна область науки и техники не обходится без их применения.... смотреть

ПОЛУПРОВОДНИКИ

[semiconductors] — широкий класс веществ, характеризующийся электропроводностью, промежуточной между электропроводностью металлов (106 — 104 Ом-1 • см-... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 - 104 Ом-1 см-1) и диэлектриков (10-8 - 10-12 Ом-1 см-1). Характерная особенность полупроводников - возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют и другие внешние воздействия: свет, сильное электрическое поле, потоки быстрых частиц и т. д. Высокая чувствительность электрических и оптических свойств к внешним воздействиям и содержанию примесей и дефектов в кристаллах также характерна для полупроводников. Все эти особенности и определяют их широкое применение в технике (см. Полупроводниковые приборы). К полупроводникам относится большая группа веществ (Si, Ge и др., см. Полупроводниковые материалы). Носителями заряда в полупроводниках являются электроны проводимости и дырки (носители положительного заряда). В идеальных кристаллах они появляются всегда парами, так что концентрации обоих типов носителей равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителей. Полное описание природы носителей заряда в полупроводниках и законов их движения дается в квантовой теории твердого тела (см. также Зонная теория).<br><br><br>... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ - вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 - 104 Ом-1 см-1) и диэлектриков (10-8 - 10-12 Ом-1 см-1). Характерная особенность полупроводников - возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют и другие внешние воздействия: свет, сильное электрическое поле, потоки быстрых частиц и т. д. Высокая чувствительность электрических и оптических свойств к внешним воздействиям и содержанию примесей и дефектов в кристаллах также характерна для полупроводников. Все эти особенности и определяют их широкое применение в технике (см. Полупроводниковые приборы). К полупроводникам относится большая группа веществ (Si, Ge и др., см. Полупроводниковые материалы). Носителями заряда в полупроводниках являются электроны проводимости и дырки (носители положительного заряда). В идеальных кристаллах они появляются всегда парами, так что концентрации обоих типов носителей равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителей. Полное описание природы носителей заряда в полупроводниках и законов их движения дается в квантовой теории твердого тела (см. также Зонная теория).<br>... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 - 104 Ом-1 см-1) и диэлектриков (10-8 - 10-12 Ом-1 см-1). Характерная особенность полупроводников - возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют и другие внешние воздействия: свет, сильное электрическое поле, потоки быстрых частиц и т. д. Высокая чувствительность электрических и оптических свойств к внешним воздействиям и содержанию примесей и дефектов в кристаллах также характерна для полупроводников. Все эти особенности и определяют их широкое применение в технике (см. Полупроводниковые приборы). К полупроводникам относится большая группа веществ (Si, Ge и др., см. Полупроводниковые материалы). Носителями заряда в полупроводниках являются электроны проводимости и дырки (носители положительного заряда). В идеальных кристаллах они появляются всегда парами, так что концентрации обоих типов носителей равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителей. Полное описание природы носителей заряда в полупроводниках и законов их движения дается в квантовой теории твердого тела (см. также Зонная теория).... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ , вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106 - 104 Ом-1 см-1) и диэлектриков (10-8 - 10-12 Ом-1 см-1). Характерная особенность полупроводников - возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют и другие внешние воздействия: свет, сильное электрическое поле, потоки быстрых частиц и т. д. Высокая чувствительность электрических и оптических свойств к внешним воздействиям и содержанию примесей и дефектов в кристаллах также характерна для полупроводников. Все эти особенности и определяют их широкое применение в технике (см. Полупроводниковые приборы). К полупроводникам относится большая группа веществ (Si, Ge и др., см. Полупроводниковые материалы). Носителями заряда в полупроводниках являются электроны проводимости и дырки (носители положительного заряда). В идеальных кристаллах они появляются всегда парами, так что концентрации обоих типов носителей равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителей. Полное описание природы носителей заряда в полупроводниках и законов их движения дается в квантовой теории твердого тела (см. также Зонная теория).... смотреть

ПОЛУПРОВОДНИКИ

- вещества, электропроводность которых при комнатнойтемпературе имеет промежуточное значение между электропроводностьюметаллов (106 - 104 Ом-1 см-1) и диэлектриков (10-8 - 10-12 Ом-1 см-1).Характерная особенность полупроводников - возрастание электропроводности сростом температуры; при низких температурах электропроводностьполупроводников мала; на нее влияют и другие внешние воздействия: свет,сильное электрическое поле, потоки быстрых частиц и т. д. Высокаячувствительность электрических и оптических свойств к внешним воздействиями содержанию примесей и дефектов в кристаллах также характерна дляполупроводников. Все эти особенности и определяют их широкое применение втехнике (см. Полупроводниковые приборы). К полупроводникам относитсябольшая группа веществ (Si, Ge и др., см. Полупроводниковые материалы).Носителями заряда в полупроводниках являются электроны проводимости идырки (носители положительного заряда). В идеальных кристаллах онипоявляются всегда парами, так что концентрации обоих типов носителейравны. В реальных кристаллах, содержащих примеси и дефекты структуры,равенство концентраций электронов и дырок может нарушаться и проводимостьосуществляется практически только одним типом носителей. Полное описаниеприроды носителей заряда в полупроводниках и законов их движения дается вквантовой теории твердого тела (см. также Зонная теория).... смотреть

ПОЛУПРОВОДНИКИ

в-ва, электропроводность к-рых при комнатной темп-ре имеет промежуточное значение между электропроводностью металлов (106-108См/м) и диэлектриков (10-8... смотреть

ПОЛУПРОВОДНИКИ

, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106-104 Ом-1 см-1) и ... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106-104 Ом-1 см-1) и диэлектриков (10-8-10-12 Ом-1). Характерная особенность полупроводников - возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют свет, сильное электрическое поле, потоки быстрых частиц и т.д. Высокая чувствительность электропроводности к содержанию примесей и дефектов в кристаллах также характерна для полупроводников. К полупроводникам относится большая группа веществ (Ge, Si и др.). Носителями заряда в полупроводниках являются электроны проводимости и дырки. В идеальных кристаллах они появляются всегда парами, так что их концентрации равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителей (смотри также Зонная теория, Твердое тело). Особенности полупроводников определяют их применение (смотри Полупроводниковые приборы). <br>... смотреть

ПОЛУПРОВОДНИКИ

вещества, к-рые обладают электронной проводимостью, причём по уд. электрич. проводимости а занимают промежуточное положение между хорошими проводниками... смотреть

ПОЛУПРОВОДНИКИ

корень - ПОЛ; соединительная гласная - У; приставка - ПРО; корень - ВОД; суффикс - НИК; окончание - И; Основа слова: ПОЛУПРОВОДНИКВычисленный способ об... смотреть

ПОЛУПРОВОДНИКИ

вещества, которые по электрической проводимости занимают промежуточное положение между проводниками (металлами) и изоляторами (диэлектриками). Наиболее... смотреть

ПОЛУПРОВОДНИКИ

полупроводники, полупроводник′и, -ов, ед. ч. -ник, -а, м. (спец.). Вещества, электропроводность к-рых при комнатной температуре меньше, чем у металлов, и больше, чем у диэлектриков.<br>прил. полупроводниковый, -ая, -ое. П. радиоприёмник (на полупроводниках).<br><br><br>... смотреть

ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ, -ов, ед. -ник, -а, м. (спец.). Вещества, электропроводность которых при комнатной температуре меньше, чем у металлов, и больше, чем у диэлектриков. || прилагательное полупроводниковый, -ая, -ое. П. радиоприёмник (на полупроводниках).... смотреть

ПОЛУПРОВОДНИКИ

полупроводник||имн. (ед. полупроводник м) физ. οἱ ήμιαγωγοί.

ПОЛУПРОВОДНИКИ

Смотри полупроводниковые вещества (полупроводники)

ПОЛУПРОВОДНИКИ

полупроводники м мн. οι ημιαγωγοί

ПОЛУПРОВОДНИКИ АМОРФНЫЕ

ПОЛУПРОВОДНИКИ АМОРФНЫЕ, вещества в твёрдом аморфном состоянии, обладающие свойствами полупроводников (см. Аморфное состояние). П. а. разделяют на ... смотреть

ПОЛУПРОВОДНИКИ АМОРФНЫЕ

        вещества в твёрдом аморфном состоянии, обладающие свойствами полупроводников (См. Полупроводники) (см. Аморфное состояние). П. а. разделяют на ... смотреть

ПОЛУПРОВОДНИКИ ОРГАНИЧЕСКИЕ

ПОЛУПРОВОДНИКИ ОРГАНИЧЕСКИЕ, твёрдые органические вещества, к-рые имеют (или приобретают под влиянием внешних воздействий) электронную или дырочную п... смотреть

ПОЛУПРОВОДНИКИ ОРГАНИЧЕСКИЕ

        твёрдые органические вещества, которые имеют (или приобретают под влиянием внешних воздействий) электронную или дырочную проводимости (см. Полу... смотреть

T: 256