МЕТАЛЛЫ

(от греч. metallon-первоначально, шахта, копи), в-ва, обладающие в обычных условиях характерными, металлическими, свойствами-высокими электрич. проводимостью и теплопроводностью, отрицат. температурным коэф. электрич. проводимости, способностью хорошо отражать световые волны (блеск), пластичностью. К М. относятся как собственно М. (простые в-ва), так и их сплавы, металлические соединения, в т. ч. интерметаллиды. Иногда М. наз. все в-ва, обладающие теми или иными металлич. св-вами, напр. т. наз. "синтетические" М. (см. Интеркалаты), металлы органические.

Ранее характерными признаками М. считались блеск, пластичность и ковкость - "светлое тело, которое ковать можно" (М. В. Ломоносов). Но металлич. блеском обладают и нек-рые неметаллы, напр. иод. Известны хрупкие М., хотя мн. из них в результате тщательной очистки получены в пластичном состоянии. В настоящее время важнейшим признаком М. признается отрицат. температурный коэф. электрич. проводимости, т. е. понижение электрич. проводимости с ростом т-ры. Из 109 элементов в периодич. системе 86 относят к М. Граница между М. и неметаллами в периодич. таблице (в ее длинном варианте) проводится по диагонали от В до At. О нек-рых элементах, напр. Ge, Sb, нет единого мнения, все же правильнее считать Ge неметаллом, т. к. он обладает полупроводниковыми св-вами, a Sb-металлом, хотя по физ. св-вам сурьма -полуметалл.

Олово существует как в металлической (b-Sn), в полупроводниковой (a-Sn) модификации. С др. стороны, у Ge, Si, P и нек-рых др. неметаллов при высоких давлениях обнаружены модификации с металлич. проводимостью. Можно предположить, что при достаточно высоких давлениях все в-ва могут приобретать металлич.св-ва. Поэтому вопрос об отнесении того или иного элемента к М. неметаллам следует, по-видимому, решать на основании рассмотрения не только физ. св-в простого в-ва, но и его хим. св-в. Иногда для элементов, лежащих на границе между М. и неметаллами, применяют термин "полуметаллы", хотя этот термин в химии теперь не рекомендуется.

В М. существует металлическая связь, характеризующаяся тем, что кристаллич. решетка образована положит. ионами, тогда как валентные электроны делокализованы по всему пространству решетки. М. можно представить в виде остова из положит. ионов, погруженного в "электронный газ", к-рый компенсирует силы взаимного отталкивания положит. ионов. Энергия этих делокализованных электронов-электронов проводимости - отвечает зоне проводимости. Согласно зонной теории, у М. отсутствует запрещенная зона между валентной зоной и зоной проводимости (см. Твердое тело).

В кристаллах М. атомы ионизированы лишь частично и часть валентных электронов остается связанной, в результате возможно появление частично ковалентных связей между соседними атомами. Прочность связи в кристаллич. структуре М. характеризуется энтальпией атомизации, к-рая меняется от 61,4 кДж/молъ у Hg до 850 кДж/моль у W. Макс. энтальпия атомизации характерна для М. рядов Nb-Ru и Hf-Ir. Относящиеся к ним М. отличаются макс. т-рами плавления и высокой мех. прочностью.

Классификация М. Все М. делятся на четыре группы (см. форзац): s-М. (все s-элементы, кроме Н и Не), р-М. (элементы гр. IIIа, кроме В, а также Sn, Рb, Sb, Bi, Ро), d-M.и f-М., к-рые объединяются под назв. "переходных" (см. Переходные элементы). М. первых двух групп иногда наз. "простыми". Из этих групп выделяются нек-рые более узкие группы: из s-М.- щелочные металлы и щелочноземельные элементы, из d-M.- платиновые металлы. Группа редкоземельных элементов включает как d-, так и f-М. (подгруппа Sc и лантаноиды).

Существует также, хотя и не общепринятая, техн. классификация М. В известной мере она перекликается с геохимическими классификациями элементов. Обычно выделяют след. группы: черные М. (Fe); т я ж е л ы е ц в е т н ы е М.-Сu, Pb, Zn, Ni и Sn (к этой группе примыкают т. наз. малые, или младшие, М.-Со, Sb, Bi, Hg, Cd, нек-рые из них иногда относят к редким М.); легкие М. (с плотностью менее 5 г/см 3 )-Аl, Mg, Ca и т. д.; драгоценные M.-Au, Ag и платиновые М.; легирующие (или ферросплавные) М.-Mn, Cr, W, Mo, Nb, V и др.; редкие М. (см. Редкие элементы), разбиваемые в свою очередь на неск. групп; радиоактивные M.-U, Th, Pu и др.

Кристаллическая структура. Большинство М. кристаллизуется в одном из трех структурных типов (см. Металлические кристаллы), а именно-в кубич. и гексагoн. плот-нейших упаковках (см. Плотная упаковка )или в объем-ноцентрированной кубич. решетке. В плотнейших упаковках каждый атом на равных расстояниях имеет 12 ближайших соседей. В объемноцентрированной кубич. решетке у каждого атома 8 равноудаленных соседей, еще 6 соседей расположены на большем (на 15%) расстоянии. Поэтому ко-ординац. число в этой структуре считают равным 14 (8 + 6). Межатомные расстояния в кристаллич. структуре М. характеризуются металлич. радиусом (см. Атомные радиусы).

При обычных-условиях щелочные М., а также Ва, Ra, элементы подгрупп V и Сr кристаллизуются в объемно-центрированной кубич. решетке типа a-Fe. Плотнейшая кубич. упаковка (гранецентрированная кубич. решетка) типа Си характерна для Al, Ni, металлов подгруппы Сu, платиновых М. (кроме Ru и Os) и т. д. В гексагoн. плотнейшей упаковке типа Mg кристаллизуются Be, Са, Sr, Zn, Cd, Co, Ru, Os, элементы подгрупп Ti и Sc, мн. РЗЭ. Более сложными являются структуры разл. модификаций Мn, Ра, U, трансурановых элементов.

Мн. М. претерпевают при изменении т-ры или давления полиморфные превращения. М., к-рые при низких т-рах образуют плотнейшие упаковки, напр. Са, La, Zr, часто имеют высокотемпературные модификации с объемноцентрированной кубич. структурой.

При плавлении М. сохраняют свои электрич., тепловые и оптич. св-ва. Вблизи т-ры плавления в жидких М. наблюдается примерно такой же ближний порядок, как и в кристаллич. М. С повышением т-ры ближний порядок нарушается вплоть до полного разупорядочения.

Физические свойства. Физ. св-ва М. меняются в очень широких пределах. Так, т-ра плавления изменяется от - 38,87 °С (Hg) до 3380 °С (W), плотность - от 0,531 г/см 3 (Li) до 22,5 г/см 3 (Os). Уд. электрич. сопротивление р при 25 °С имеет значения от 1,63 (Ag) до 140 (Мn) мкОм . см. Сопротивление движению электронов (рассеяние электронов) возникает вследствие нарушения кристаллич. решетки из-за теплового движения атомов, а также дефектов (вакансий, дислокаций, примесных атомов). Мерой его является длина своб. пробега электрона. При комнатной т-ре она равна ~ 10-6 см у М. обычной чистоты и ~ 10-2 см у высокочистых. Температурный коэф. р (в интервале 0-100°С) меняется в пределах 1,0.10-3 (Hg)-9,0.10-3 К -1 (Be). При гелиевых т-рах (4,2 К) р практически не зависит от т-ры (r ост). Его измерение используют для характеристики чистоты и совершенства кристаллов М. Чем больше отношение r273/r4,2, тем чище М. В монокристаллах высокой чистоты оно достигает 104-105. Нек-рые М. при низких т-рах становятся сверхпроводниками, при этом критич. т-ра у чистых М. от сотых долей до 9 К.

У М. наблюдается термоэлектронная эмиссия (способность испускать электроны при высокой т-ре). Эмиссия электронов возникает также под действием электромагн. излучения в видимой и УФ областях спектра (фотоэлектронная эмиссия), внеш. электрич. поля высокой напряженности (туннельная, или автоэлектронная, эмиссия), при бомбардировке пов-сти М. электронами (вторичная электронная эмиссия) или ионами (ионно-электронная эмиссия), при взаимод. пов-сти М. с плазмой (взрывная электронная эмиссия). Перепад т-ры вызывает в М. появление электрич. тока (термоэдс).

Теплопроводность М. обусловлена в осн. движением электронов, поэтому уд. коэф. теплопроводности (МЕТАЛЛЫ фото №1) и электрич. проводимости (s) М. связаны между собой соотношением МЕТАЛЛЫ фото №2/(sХ Т) = L =2,45Х10 -8 ВтХОм/К 2 (закон Видемана-Франца). Уд. коэф. теплопроводности М. имеет значения от 425 (для Ag) до 8,41 (для Bi) Вт/(м-К).

Температурный коэф. линейного расширения М. в интервале 0-100°С имеет значения от 4,57.10-6 (для Os) до 10-4 K-1 (для Sr). Согласно эмпирич. правилу Грюнайзена, относит. увеличение объема М. в интервале от О К до т-ры плавления приблизительно равно 0,06. Поэтому температурный коэф. объемного расширения у тугоплавких М. меньше, чем у легкоплавких.

У большинства М. магн. восприимчивость по абс. величине сравнительно мала (~ 10-9) и слабо зависит от т-ры. Среди М. есть диамагнетики, напр. Bi (МЕТАЛЛЫ фото №3= Ч 1,34.10-9), и парамагнетики, причем все переходные М., кроме металлов I и II гр., парамагнитны. Нек-рые из них при т-рах точки Кюри переходят в магнитно-упорядоченное состояние. М. триады Fe, а также Gd и нек-рые др. лантаноиды - ферромагнетики, тогда как Сr, Мn, большинство лантаноидов-антиферромагнетики.

Излучения оптич. диапазона почти полностью отражаются пов-стью М., вследствие чего они непрозрачны и обладают характерным металлическим блеском (порошки мн. М. матовые). Нек-рые М., например Аu в виде тонкой фольги, просвечивают. Отраженный от поверхности М. плоскополяризованный свет становится эллиптически поляризованным.

Для использования М. в качестве конструкц. материалов важнейшее значение имеет сочетание мех. св-в - пластичности и вязкости с значит. прочностью, твердостью и упругостью. Эти св-ва зависят не только от состава (чистоты металла), но и от совершенства кристаллич. решетки (наличия дефектов) и структуры, определяемых предварительной термич. и мех. обработкой образца.

Мех. св-ва реальных М. определяются наличием дефектов, в первую очередь дислокаций, т. к. перемещение дислокаций по плоскостям кристаллич. решетки с наиб. плотной упаковкой является осн. механизмом пластич. деформации М. Взаимод. дислокаций с др. дефектами увеличивает сопротивление пластич. деформации. В процессе деформации число дислокаций растет, соотв. растет и сопротивление деформации (деформац. упрочнение, или наклеп). Напряженное состояние и наклеп после деформации ликвидируются при отжиге. Рост напряжений в местах "сгущения" дислокаций вызывает зарождение трещин - очагов разрушения. Важнейшая характеристика мех. св-в М.-модуль упругости Е(модуль Юнга). Предел текучести, т. е. сопротивление пластич. деформации, 10-3-10-4 Е.

Химические свойства. М. обладают низкими значениями первого потенциала ионизации и сродства к электрону. Вследствие этого в хим. р-циях они выступают как доноры электронов (восстановители), а в соед. и их р-рах образуют положительно заряженные ионы (в большинстве случаев аквакатионы). Электроотрицательности атомов М. ниже электроотрицательностей атомов неметаллов. М. могут входить в состав сложных анионов, напр. МnО -4, или ацидокомплексов, напр. [Fe(CN)6]4-, однако в них атомы М. всегда являются центрами положит. заряда. Только для нек-рых М., находящихся на границе с неметаллами, таких, как Sn, Po, Sb и т. п., известны соед., напр. гидриды, в к-рых М. имеют формально отрицат. степень окисления. Но во всех этих соед. хим. связь ковалентная.

Способность М. к окислению меняется в очень широких пределах. Большинство М. окисляется кислородом воздуха уже при обычной т-ре, однако скорость и механизм р-ции очень сильно зависят от природы М. В большинстве случаев при этом образуются оксиды, а у щелочных М., кроме Li,-пepоксиды. Устойчивость М. на воздухе определяется св-вами образующегося оксида, в частности отношением молярных объемов V окс/VM.. Если V окс/V М. > 1, на М. образуется защитная пленка, предохраняющая М. от дальнейшего окисления. Такая пленка характерна, напр., для Al, Ti, Сr, к-рые устойчивы на воздухе, хотя и обладают высокой активностью. М., для к-рых это отношение меньше 1 (напр., щелочные), на воздухе неустойчивы.

СN2 реагирует ряд М., напр. Li при обычной т-ре , a Mg, Zr, Hf, Ti-при нагревании. Мн. М. активно взаимод. с Н 2, галогенами, халькогенами. Все М., чьи стандартные электродные потенциалы отрицательнее, чем Ч0,413 В, окисляются водой с выделением Н 2. Щелочные и щел.-зем. М. реагируют с водой при обычных т-рах, а такие М., как Zn или Fe, реагируют с водяным паром при высоких т-рах. С р-рами щелочей взаимод. М., образующие р-римые анионные гидроксокомплексы (Be, Zn, Al, Ga, Sn).

Большинство М. окисляется теми или иными к-тами. М., имеющие отрицат. стандартные электродные потенциалы, т. е. стоящие в электрохимическом ряду напряжений до водорода, окисляются ионами Н + и растворяются поэтому при действии неокисляющих к-т (соляная или разб. H2SO4), если не образуются нер-римые продукты. Р-ции способствует образование анионных комплексов. Азотная к-та, даже разбавленная, окисляет мн. М. При этом, если ионы М. устойчивы в низших степенях окисления, образуются ка-тионные комплексы, если в высших, как в случае, напр., Re,-анионные (ReO-4 ). Нек-рые М. реагируют с разб. HNO3 и H2SO4 с образованием катионных комплексов и пас-сивируются в конц. р-рах этих к-т. Для растворения малоактивных М., напр. Аu или Pt, используют смеси, содержащие окислитель и поставщик лигандов для образования р-римых комплексов, таких, как, напр., царская водка или смесь HNO3 с HF.

О взаимод, М. со средой, ведущем к разрушению М., см. в ст. Коррозия металлов.

Важная характеристика металлич. элементов-их способность образовывать основные оксиды и соотв. гидроксиды. У М. главных подгрупп периодич. системы основность оксидов и гидроксидов растет сверху вниз, в побочных подгруппах (кроме I - III) - обратная зависимость. По периодам и рядам с ростом порядкового номера элемента основность убывает. У М., имеющих неск. степеней окисления, как d- и f-М., с ростом степени окисления основность оксидов уменьшается и высшие оксиды имеют кислотный характер.

Получение М. Извлечение М. из прир. сырья и др. источников - область металлургии. Можно отметить двоякий характер технологии М. Технология железа, тяжелых цветных М., а также малых М. и большинства рассеянных элементов (халькофильных элементов) имеет "металлур-гич." характер. Это означает, что конечный продукт получают без предварит. выделения к.-л. чистого соединения, что обусловлено сравнит. легкостью восстановления до М. как пирометаллургич. (см. Пирометаллургия), так и гидроме-таллургич. (электролиз р-ров, цементация и т. п.; см. Гидрометаллургия )путем.

Иной характер имеет технология легких, а также редких М. (литофильных элементов). Это связано с трудностями их получения в своб. состоянии. Для этих М. технология разбивается четко на два этапа - получение чистого соед., напр. Аl2 О 3, и получение М. из этого соединения. Сами М. в произ-ве их соед. обычно не используют. Поэтому можно сказать, что технология этих М. имеет более "химический" характер.

Способность М. к взаимному растворению с образованием при кристаллизации твердых растворов и интерметал-лидов, разнообразным фазовым превращениям дает возможность получения большого числа сплавов, отличающихся разл. структурой и самыми разнообразными сочетаниями св-в. В совр. технике применяют св. 30 000 разл. сплавов - легкоплавких и тугоплавких, очень твердых и пластичных, с большой и малой электрич. проводимостью, ферромагнитных и др. В сплавах ныне используют практически все известные М. (кроме искусственно полученных трансплутониевых элементов). Мера использования в значит. степени определяется доступностью М.-содержанием в земной коре, а также степенью концентрирования в месторождениях и трудностью получения. Использование сплавов (бронзовый век) было одним из важнейших этапов становления человеческой цивилизации. И в настоящее время сплавы-важнейшие конструкционные материалы. В последние годы наблюдается тенденция нек-рого снижения роли железа и увеличение использования легких М. (Al, Mg) и наиб. доступных редких М. (Ti, Nb, Zr).

Лит.: Пирсон У., Кристаллохимия и физика металлов и сплавов, пер. с англ., ч. 1-2, М., 1977; Уманский Я. С., Скаков Ю. А., Физика металлов. Атомное строение металлов и сплавов, М., 1978; Бернштейн М. Л., Зай-мовский В. А., Механические свойства металлов, 2 изд., М., 1979; Лившиц Б. Г., Крапошин В. С., Липецкий Я. Л., Физические свойства металлов и сплавов, 2 изд., М., 1980; Баррет Ч. С., Массальский Т. Б., Структура металлов, пер. с англ., ч. 1-2, М., 1984; Гуляев А. П., Металловедение, 6 изд., М., 1986; Зайцев Б. Е., Общие физические и химические свойства металлов, М., 1987; Пекшева Н. П., Химия металлов, Красноярск, 1987; Абрикосов А. А., Основы теории металлов, М., 1987; Бобылев А. В., Механические и технологические свойства металлов, 2 изд., М., 1987. П. И. Федоров.


Смотреть больше слов в «Химической энциклопедии»

МЕТАЛЛЫ ОРГАНИЧЕСКИЕ →← МЕТАЛЛУРГИЯ

Смотреть что такое МЕТАЛЛЫ в других словарях:

МЕТАЛЛЫ

I(и металлоиды)(хим.) — М. называется группа простых тел (см.), обладающих известными характерными свойствами, которые в типических представителях резк... смотреть

МЕТАЛЛЫ

        простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным темпера... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ, простые вещества, обладающие в обычных условиях характерными свойствами: высокой электропроводностью и теплопроводностью, отрицательным темп... смотреть

МЕТАЛЛЫ

(от греч. metallon, первоначально — шахта, руда, копи), простые в-ва, обладающие в обычных условиях характерными св-вами: высокими электропрово... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫв качестве элемента мифопоэтической системы М. могут функционировать в нескольких аспектах. Иногда (обычно в более поздних традициях) они образу... смотреть

МЕТАЛЛЫ

[metals] — простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны, пластичностью. М. В. Ломоносов определял металлы как «светлые тела, которые ковать можно». Металлы в твердом состоянии имеют кристаллическую решетку. В парообразном состоянии металлы одноатомны, характерные свойства металлjd обусловлены их электронным строением. Атомы металлов легко отдают внешние (валентные) электроны. В кристаллической решетке металлов не все электроны связаны со своими атомами. Некоторая часть (~1 электрон на атом) подвижна и может более или менее свободно перемещаться. Таким образом, металлы можно представить в виде остова (каркаса) из положительн ионов, погруженного в «электронный газ». Последний компенсирует силы электростатического отталкивания между положительно заряженными ионами и тем самым связывает их в твердое тело, обеспечивая так называемую металлическую связь. Из известных 105 химических элементов 83 — металлы и лишь 22 — неметаллы. Если в Периодической системе элементов провести прямую от В до At, то можно считать, что неметаллы расположены на этой линии и справа от нее, а металлы — слева.<br>По строению электронных оболочек металлы принято разделять на непереходные (или нормальные) и переходные. Непереходные металлы характеризуются тем, что в их атомах происходит последовательное заполнение <i>s-</i> и <i>р-</i> электронных оболочек. В атомах переходных металлов происходит достраивание <i>d-</i> и <i>f</i>-оболочек. К непереходным металлам относят 22 металла, занимающих подгруппы а в Периодической системе элементов: Li, Na, К, Be, Mg, Ca, Ba, Sb, Bi и др. Переходные металлы занимают подгруппы б в Периодической системе элементов. Наиболее типичные переходные металлы: Cu, Ag, Au, Zn, V, Mb, Та, Cr, Mo, W, Fe, Ni, Co и др. К переходным металлам относят также лантаноиды (14) и актиноиды (14). Металлам присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных оксидов и гидрооксидов, замещение водорода в кислотах и т. д. <br>Большинство металлов кристаллизуются с образованием относительно простых ОЦК, ГЦК и ПГУ кристаллических решеток, соответствующих наиболее плотной упаковке атомов. Лишь немногие металлы имеют более сложные типы кристаллических решеток. Металлы в зависимости от внешних условий (температуры, давления) могут существовать в двух или более кристаллических модификациях (Смотри Полиморфизм). Полиморфные превращения иногда, например, превращение белого олова (β-Sn) в серое (α-Sn), сопровождается потерей металлических свойств. <br>В силу таких свойств, как прочность, Al, V, Mo, W, Ti, Zr и др.-до XX в. либо не велось, либо было очень ограниченно. С 1970-х гг. в промышленности применяются практически все металлы, встречающиеся в природе. <br>Все металлы и их сплавы подразделяются на черные (к ним относят железо и РЗМ)<br> — легкоплавкие металлы<br> — щелочноземельные металлы<br> — черновые металлы<br>... смотреть

МЕТАЛЛЫ

(нем. Metall; первоисточник: греч. metallon - шахта, руда, металл) - простые вещества, обладающие высокими теплопроводностью и электрич. проводимостью,... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ, химические элементы, обладающие высокой тепло- и электропроводностью, атомы которых связаны в кристаллические решетки единственным в своем род... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ (греч.) - вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 с<span>м&amp;sup3</span>) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.<br>... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ (греч .), вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.<br><br><br>... смотреть

МЕТАЛЛЫ

- (греч.) - вещества, обладающие в обычных условиях высокимиэлектропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры)и теплопроводностью, ковкостью, ""металлическим"" блеском и др. свойствами,обусловленными наличием в их кристаллической решетке большого количества(1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижныхэлектронов. Металлы можно представить в виде ионного кристаллическогоостова, погруженного в электронный газ, который, компенсируяэлектростатическое отталкивание ионов, связывает их в твердое тело(металлическая связь). Металлическими свойствами обладают более 80химических элементов и множество сплавов. Химические свойства металловобусловлены слабой связью валентных электронов с ядрами атомов: они легкообразуют положительные ионы, проявляют положительную степень окисления,образуют основные оксиды и гидрооксиды, большинство металлов замещаетводород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавына его основе) и цветные (все остальные). Металлы играют огромную рольглавным образом как конструкционные и электротехнические материалы.... смотреть

МЕТАЛЛЫ

вещества, обладающие в обычных условиях высокими электропроводностью (10б-108См/м, уменьшается с ростом темп-ры) и теплопроводностью, ковкостью, "метал... смотреть

МЕТАЛЛЫ

, простые вещества, обладающие в обычных условиях характерными свойствами - высокой электропроводностью (106-104 Ом-1´см-1), уменьшающейся с ростом тем... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫ, простые вещества, обладающие в обычных условиях характерными свойствами - высокой электропроводностью (106-104 Ом-1?см-1), уменьшающейся с ростом температуры, высокой теплопроводностью, блеском, пластичностью, ковкостью и др. Свойства металлов обусловлены наличием в их кристаллической решетке "электронного газа" - большого количества подвижных, слабо связанных с атомным ядром электронов. В периодической системе из 109 элементов 85 - металлы. В технике железо и его сплавы относят к черным металлам, остальные - к цветным, металлы с плотностью менее 5000 кг/м3 называются легкими, прочие - тяжелыми. В свободном виде в природе встречаются только благородные металлы. Металлы используются главным образом как конструкционные и электротехнические материалы. <br>... смотреть

МЕТАЛЛЫ

м. мн. ч. metalli m pl ( см. тж металл) металлы переходной группы, переходные металлы — metalli di transizione {intermedi} - благородные металлы- драг... смотреть

МЕТАЛЛЫ

(или ЭЛЕМЕНТЫ) РАССЕЯННЫЕ — встречающиеся в ничтожных количествах в г. п. и рудах, образуя очень редко самостоятельные м-лы; обычно это изоморфные прим... смотреть

МЕТАЛЛЫ

Металлы – вещества, обладающие в обычных условиях электропроводностью, теплопроводностью, ковкостью, «металлическим – блеском и др. свойствами, обу... смотреть

МЕТАЛЛЫ

МЕТАЛЛЫхимически-простые тела, отличающиеся особым специфическим блеском, непрозрачностью, способностью проводить теплоту и электричество, плавкостью и... смотреть

МЕТАЛЛЫ

Металлы ассоциируются: золото с Солнцем, серебро - с Луной, свинец - с Сатурном, олово - с Юпитером, железо - с Марсом, ртуть - с Меркурием, медь или латунь - с Венерой. Металлы неблагородные олицетворяют чувственный мир человека невозрожденного, а золото символизирует достижение просветления и духовности. В алхимии неблагородным металлом считается свинец, над которым следует работать, чтобы получить наилучший металл - золото, просветление. Металлы - это как бы зародыши в земном чреве.<br>... смотреть

МЕТАЛЛЫ

корень - МЕТАЛЛ; окончание - Ы; Основа слова: МЕТАЛЛВычисленный способ образования слова: Бессуфиксальный или другой∩ - МЕТАЛЛ; ⏰ - Ы; Слово Металлы со... смотреть

МЕТАЛЛЫ

. В свящ. Писании нередко упоминаются из металлов: <, <, <, <, цинк, <, <. см. о каждом в своем месте.

МЕТАЛЛЫ

Металлы. В ·свящ. Писании нередко упоминаются из металлов: железо, медь, олово, свинец, цинк, серебро, золото. см. о каждом в своем месте.

МЕТАЛЛЫ

METALS См. АЛЮМИНИЙ; ЗОЛОТО В СЛИТКАХ; ЗОЛОТОДОБЫЧА; ЛОМ МЕТАЛЛИЧЕСКИЙ; МЕДЬ; ОЛОВО; СЕРЕБРО; СПЛАВЫ СТАЛЬНЫЕ; СТАЛЬ; ЦИНК

МЕТАЛЛЫ БЛАГОРОДНЫЕ

— син. термина металлы драгоценные.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978.

МЕТАЛЛЫ БЛАГОРОДНЫЕ

МЕТАЛЛЫ БЛАГОРОДНЫЕзолото, серебро и платина; не ржавъчот на воздухе.Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф.,1907.

МЕТАЛЛЫ ВТОРИЧНЫЕ

екіншілік металдар

МЕТАЛЛЫ ВТОРОГО РОДА

(химические элементы, занимающие по своим свойствам промежуточное положение между металлами и неметаллами) Halbmetalle

МЕТАЛЛЫ (ГРЕЧ .)

МЕТАЛЛЫ (греч .), вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.... смотреть

МЕТАЛЛЫ (ГРЕЧ.)

МЕТАЛЛЫ (греч.), вещества, обладающие в обычных условиях высокими электропроводностью (106-107 Ом-1 см-1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, "металлическим" блеском и др. свойствами, обусловленными наличием в их кристаллической решетке большого количества (1022-1023 в 1 см3) слабо связанных с атомными ядрами подвижных электронов. Металлы можно представить в виде ионного кристаллического остова, погруженного в электронный газ, который, компенсируя электростатическое отталкивание ионов, связывает их в твердое тело (металлическая связь). Металлическими свойствами обладают более 80 химических элементов и множество сплавов. Химические свойства металлов обусловлены слабой связью валентных электронов с ядрами атомов: они легко образуют положительные ионы, проявляют положительную степень окисления, образуют основные оксиды и гидрооксиды, большинство металлов замещает водород в кислотах и т. д. Металлы принято делить на черные (Fe и сплавы на его основе) и цветные (все остальные). Металлы играют огромную роль главным образом как конструкционные и электротехнические материалы.... смотреть

МЕТАЛЛЫ (ДОПОЛНЕНИЕ К СТАТЬЕ)

Металлы (дополнение к статье) благородные — см. Металлы и металлоиды (к упомянутым в этой ст. благородным М., известным во времена алхимиков, надо д... смотреть

МЕТАЛЛЫ (ДОПОЛНЕНИЕ К СТАТЬЕ)

благородные — см. Металлы и металлоиды (к упомянутым в этой ст. благородным М., известным во времена алхимиков, надо добавить позднее открытые платин... смотреть

МЕТАЛЛЫ ДРАГОЦЕННЫЕ

- (см. ДРАГОЦЕННЫЕ МЕТАЛЛЫ).

МЕТАЛЛЫ ДРАГОЦЕННЫЕ

— Au, Ag, Pt и металлы платиновой гр. — наиболее стойкие по отношению к хим. воздействиям (кроме серебра). Син.: металлы благородные.Геологический слов... смотреть

МЕТАЛЛЫ ДРАГОЦЕННЫЕ

золото, серебро, платина и металлы платиновой группы (палладий, иридий, родий, рутений и осьмий) в любом виде и состоянии, за исключением ювелирных и других бытовых изделий из этих материалов и лома таких изделий.<br><p class="src"><em><span itemprop="source">Словарь бизнес-терминов.<span itemprop="author">Академик.ру</span>.<span itemprop="source-date">2001</span>.</span></em></p>... смотреть

МЕТАЛЛЫ И МЕТАЛЛОИДЫ

Металлы и металлоиды (хим.) — М. называется группа простых тел (см.), обладающих известными характерными свойствами, которые в типических представителях резко отличают М. от других химических элементов. В физическом отношении это по большей части тела твердые при обыкновенной температуре, непрозрачные (в толстом слое), обладающие известным блеском, ковкие, тягучие, хорошие проводники тепла и электричества и проч.; в химическом отношении для них является характерной способность образовать с кислородом <i>основные окислы</i>, которые, соединяясь с кислотами, дают <i>соли. </i> Знакомство человека с М. началось с золота, серебра и меди, т. е. с М., встречающимися в свободном состоянии на земной поверхности; впоследствии к ним присоединились М., значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь М. были знакомы человечеству в глубокой древности. Между египетскими редкостями встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от Р. Х. К этим семи М. уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII столетия число М. быстро возрастает и в настоящее время доходит до 65. Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой М.; с историей их связаны важнейшие моменты истории химии. Свойства М. так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо и ртуть составляли одну естественную группу однородных веществ, и понятие о М. относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе, об образовании всего существующего из 4-х элементов (огня, земли, воды и воздуха) уже тем самым указывали на <i>сложность</i> М.; но эти идеи были так туманны, так абстрактны и имели так мало реального в основе! У алхимиков понятие о сложности М. и, как результат этого, вера в возможность превращать одни М. в другие, создавать их искусственно является основным понятием их миросозерцания. Это понятие есть естественный вывод из той массы фактов, относящихся до химических превращений М., которые накопились к тому времени. В самом деле, превращение М. в совершенно непохожую на них <i>окись</i> простым прокаливанием на воздухе и обратное получение М. из окиси, выделение одних М. из других, образование сплавов, обладающих другими свойствами, чем первоначально взятые М., и проч., все это как будто должно было указывать на сложность их натуры. Что касается собственно до превращения М. в золото, то вера в возможность этого была основана на многих видимых фактах. В первое время образование сплавов, цветом похожих на золото, например из меди и цинка, в глазах алхимиков уже было превращение их в золото. Им казалось, что нужно изменить только <i>цвет</i>, и свойства М. будут другие. В особенности много способствовали этой вере плохо поставленные опыты, когда для превращения неблагородного М. в золото брались вещества, содержавшие примесь этого золота. Например, уже в конце XVIII столетия один копенгагенский аптекарь уверял, что химически чистое серебро при сплавлении с мышьяком отчасти превращается в золото. Этот факт был подтвержден известным химиком Гитоном де Морво (Guyton de Morveau) и наделал много шума. В скорости потом было показано, что мышьяк, служивший для опыта, содержал следы серебра с золотом! Так как из семи известных тогда М. одни легче подвергались превращениям, другие труднее, то алхимики делили их на благородные — совершенные, и неблагородные — несовершенные. К первым принадлежали золото и серебро, ко вторым медь, олово, свинец, железо и ртуть. Последняя, обладая свойствами благородных М., но в то же время резко отличаясь от всех металлов своим жидким состоянием и летучестью, чрезвычайно занимала тогдашних ученых, и некоторые выделяли ее в особую группу; внимание, привлекавшееся ей, было так велико, что, как увидим далее, ртуть стали считать в числе элементов, из которых образованы М., и в ней именно видели носителя металлических свойств. Принимая существование в природе перехода одних М. в другие, несовершенных в совершенные, алхимики предполагали, что в обычных условиях это превращение идет чрезвычайно медленно, целыми веками, и, может быть, не без таинственного участия небесных светил, которым в тогдашнее время приписывали такую большую роль и в судьбе человека. По странному совпадению, М. было числом семь, как и известных тогда планет, а это еще более указывало на таинственную связь между ними. У алхимиков М. часто носят название планет; золото называется Солнцем, серебро — Луной, медь — Венерой, олово — Юпитером, свинец — Сатурном, железо — Марсом и ртуть — Меркурием. Когда были открыты цинк, висмут, сурьма и мышьяк, тела, во всех отношениях схожие с М., но у которых одно из характернейших свойств металла, <i>ковкость</i>, развито в слабой степени, то они были выделены в особую группу — полуметаллов. Деление М. на собственно металлы и полуметаллы существовало еще в средине XVIII столетия. Если М. тела сложные, то что же входит в их состав? В первое время алхимики принимали, что они образованы из двух элементов — ртути и серы. Как сложилось это воззрение — сказать трудно, но его мы находим уже в VIII столетия. По Geber‘у доказательством присутствия ртути в М. служит то, что она их растворяет, и в этих растворах индивидуальность их исчезает, поглощается ртутью, чего не случилось бы, если бы в них не было одного общего с ртутью начала. Кроме того, ртуть со свинцом давала нечто похожее на олово. Что касается серы, то, может быть, она взята потому, что были известны сернистые соединения, по внешнему виду схожие с М. В дальнейшем эти простые представления, вероятно, вследствие безуспешных попыток приготовления М. искусственно, крайне усложняются, запутываются. В понятиях алхимиков, например Х—XIII столетий, ртуть и сера, из которых образованы М., не были теми ртутью и серой, которые имели в руках алхимики. Это было только нечто схожее с ними, обладающее особыми свойствами; нечто такое, которое в обыкновенной сере и ртути существовало реально, было выражено в них в большей степени, чем в других телах. Под ртутью, входящей в состав М., представляли нечто, обуславливающее неизменяемость их, металлический блеск, тягучесть, одним словом, носителя металлического вида; под серой подразумевали носителя изменяемости, разлагаемости, горючести М. Эти два элемента находились в М. в различном количестве и, как тогда говорили, различным образом фиксированные; кроме того, они могли быть различной степени чистоты. По Геберу, например, золото состояло из большого количества ртути и небольшого количества серы в высшей степени чистоты и наиболее фиксированных; в олове, напротив, предполагали много серы и мало ртути, которые были не чисты, плохо фиксированы и проч. Всем этим, конечно, хотели выразить различное отношение М. к единственному в тогдашнее время могущественному химическому агенту — огню. При дальнейшем развитии этих воззрений двух элементов — ртути и серы — для объяснения состава М. алхимикам показалось недостаточно; к ним присоединили <i>соль</i>, а некоторые мышьяк. Этим хотели указать, что при всех превращениях М. остается нечто не летучее, постоянное. Если в природе превращение неблагородных М. в благородные совершается веками, то алхимики стремились создать такие условия, в которых этот процесс совершенствования, созревания шел бы скоро и легко. Вследствие тесной связи химии с тогдашней медициной и тогдашней биологией, идея о превращении М. естественным образом отождествлялась с идеей о росте и развитии организованных тел: переход, например, свинца в золото, образование растения из зерна, брошенного в землю и как бы разложившегося, брожение, исцеление больного органа у человека — все это были частные явления одного общего таинственного жизненного процесса, <i> совершенствования</i>, и вызывались одними стимулами. Отсюда само собой понятно, что таинственное начало, дающее возможность получить золото, должно было исцелять болезни, превращать старое человеческое тело в молодое и проч. Так сложилось понятие о чудесном философском камне. Что касается роли философского камня в превращении неблагородных М. в благородные, то больше всего существует указаний относительно перехода их в золото, о получении серебра говорится мало. По одним авторам, один и тот же философский камень превращает М. в серебро и золото; по другим — существуют два рода этого вещества: одно совершенное, другое менее совершенное, и это то последнее и служит для получения серебра. Относительно количества философского камня, требующегося для превращения, указания тоже разные. По одним, 1 часть его способна превратить в золото 10000000 частей М., по другим — 100 частей и даже только 2 части. Для получения золота плавили какой-нибудь неблагородный М. или брали ртуть и бросали туда философский камень; одни уверяли, что превращение происходит мгновенно, другие же — мало-помалу и проч. Эти взгляды на природу М. и на способность их к превращениям держатся в общем в течение многих веков до XVII столетия, когда начинают резко отрицать все это, тем более что эти взгляды вызвали появление многих шарлатанов, эксплуатировавших надежду легковерных получить золото. С идеями алхимиков в особенности боролся Бойль. "Я бы хотел знать, — говорит он в одном месте, — как можно разложить золото на ртуть, серу и соль; я готов уплатить издержки по этому опыту; что касается меня, то я никогда не мог этого достигнуть". После вековых бесплодных попыток искусственного получения М. и при том количестве фактов, которые накопились к XVII столетию, например о роли воздуха при горении, увеличении веса М. при окислении, что, впрочем, знал еще Гебер в VIII столетии, вопрос об элементарности состава М., казалось, был совсем близок к окончанию; но в химии появилось новое течение, результатом которого явилась флогистонная теория, и решение этого вопроса было еще отсрочено на продолжительное время. Тогдашних ученых сильно занимали явления горения. Исходя из основной идеи тогдашней философии, что сходство в свойствах тел должно происходить от одинаковости <i>начал</i>, элементов, входящих в их состав, принимали, что тела горючие заключают общий элемент. Акт горения считался актом разложения, распадения на элементы; при этом элемент горючести выделялся в виде пламени, а другие оставались. Признавая взгляд алхимиков на образование М. из 3-х элементов, ртути, серы и соли, и принимая их реальное существование в М., горючим началом в них нужно было признать серу. Тогда другой составной частью М. нужно было, очевидно, признать остаток от прокаливания М. — их землю, как тогда говорили; следовательно, ртуть тут ни при чем. С другой стороны, сера сгорает в серную кислоту, которую многие, в силу сказанного, считали более простым телом, чем сера, и включили в число элементарных тел. Выходила путаница и противоречие. Бехер, чтобы согласовать старые понятия с новыми, принимал существование в М. <i>земли</i> трех сортов: собственно землю, землю горючую и землю ртутную. В этих-то условиях Сталь предложил свою теорию. По его мнению, началом горючести служит не сера и не какое-либо другое известное вещество, а нечто неизвестное, названное им флогистоном. М. образованы из флогистона и земли; прокаливание М. на воздухе сопровождается выделением флогистона; обратное получение М. из его земли с помощью угля — вещества, богатого флогистоном — есть акт соединения флогистона с землей. Хотя М. было несколько и каждый из них при прокаливании давал свою землю, последняя, как элемент, была одна, так что и эта составная часть М. была такого же гипотетического характера, как и флогистон; впрочем, последователи Сталя иногда принимали столько элементарных земель, сколько было М. Когда Кавендиш при растворении М. в кислотах получил водород и исследовал его свойства (неспособность поддерживать горение, его взрывчатость в смеси с воздухом и проч.), он признал в нем флогистон Сталя; М., по его понятиям, состоят из водорода и земли. Этот взгляд принимался многими последователями флогистонной теории. Несмотря на видимую стройность теории флогистона, существовали крупные факты, которые никак нельзя было связать с ней. Еще Геберу было известно, что М. при обжигании увеличиваются в весе; между тем, по Сталю, они должны терять флогистон: при обратном присоединении флогистона к земле вес полученного М. меньше веса земли. Таким образом выходило, что флогистон должен обладать каким-то особенным свойством — отрицательным тяготением. Несмотря на все остроумные гипотезы, высказанные для объяснения этого явления, оно было непонятно и вызывало недоумение. Когда Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе М. при обжигании происходит от присоединения к М. кислорода воздуха, и таким образом установил, что акт горения М. есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности М. был решен отрицательно. М. были отнесены к простым телам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. Этого взгляда химия держится поныне. <i> Металлоиды.</i> Как мы видели, одна часть простых тел образует группу М.; по предложению Берцелиуса, остальные простые тела тоже объединены в одну группу, и он дал им название металлоидов. Основанием для этого объединения были электрохимические воззрения Берцелиуса. Он представлял атомы тел биполярными и принимал, что количество электричества на обоих полюсах может быть разное, так что атом в общем мог быть заряжен положительно или отрицательно. В разных телах количество электричества в атомах предполагалось разное. При соединении различных атомов происходила или полная нейтрализация их электричеств, или частная, так что частица сложного тела или нейтральна, или заряжена известным образом. Из соединения атом, сильнее заряженный, например, положительно, мог вытеснять другой такого же рода, слабее заряженный, и проч. Подробности см. Электрохимия. При электролизе М. выделяются на отрицательном полюсе, а остальные тела (сами по себе или в соединении с кислородом) — на положительном; следовательно, можно было себе представить, что частицы М. заряжены положительным электричеством, а других тел — отрицательным, это и есть общее в натуре металлоидов, что, по Берцелиусу, и сказывается в их свойствах и дает возможность соединить их в одну группу. Представляя химическое сродство как влияние двух электричеств, становилось понятно, что тела разных групп вообще будут легче соединяться и давать более прочные соединения, чем одной и той же, и т. п. Для характеристики металлоидов указывалось, что если М., соединяясь с кислородом, вообще дают основные окислы электроположительные, то металлоиды дают вообще кислотные — электроотрицательные. Разделяя простые тела на две группы — М. и металлоидов, — еще Берцелиус указывал, что между ними существует крайне постепенный переход, так что на границе этих групп трудно сказать, имеем ли мы дело с М. или металлоидом. Например, мышьяк или даже марганец с удобством могут быть отнесены как в ту, так и в другую группу. После падения электрохимической теории исчезло основание, в силу которого неметаллы были соединены в одну группу. С другой стороны, с открытием новых элементов самое решение вопроса, имеется ли дело с М. или нет, на основании определений М. древних, стало крайне затруднительным, хотя во всяком случае понятие о М., выработанное веками, имеет такой же raison d‘ ê tre, как и понятие о щелочах, кислотах и солях. Если до сих пор делят простые тела на М. и металлоиды, то это делается в силу привычки или для удобства изложения при преподавании химии. <i> С. П. Вуколов. </i>Δ <i>. </i><br><br><br>... смотреть

МЕТАЛЛЫ И МЕТАЛЛОИДЫ

(хим.) — М. называется группа простых тел (см.), обладающих известными характерными свойствами, которые в типических представителях резко отличают М. от других химических элементов. В физическом отношении это по большей части тела твердые при обыкновенной температуре, непрозрачные (в толстом слое), обладающие известным блеском, ковкие, тягучие, хорошие проводники тепла и электричества и проч.; в химическом отношении для них является характерной способность образовать с кислородом <span class="italic">основные окислы</span>, которые, соединяясь с кислотами, дают <span class="italic">соли. </span><br><p>Знакомство человека с М. началось с золота, серебра и меди, т. е. с М., встречающимися в свободном состоянии на земной поверхности; впоследствии к ним присоединились М., значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь М. были знакомы человечеству в глубокой древности. Между египетскими редкостями встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от Р. Х. К этим семи М. уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII столетия число М. быстро возрастает и в настоящее время доходит до 65. Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой М.; с историей их связаны важнейшие моменты истории химии. Свойства М. так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо <span class="bold"> </span> и ртуть составляли одну естественную группу однородных веществ, и понятие о М. относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе, об образовании всего существующего из 4-х элементов (огня, земли, воды и воздуха) уже тем самым указывали на <span class="italic">сложность</span> М.; но эти идеи были так туманны, так абстрактны и имели так мало реального в основе! У алхимиков понятие о сложности М.и, как результат этого, вера в возможность превращать одни М. в другие, создавать их искусственно является основным понятием их миросозерцания. Это понятие есть естественный вывод из той массы фактов, относящихся до химических превращений М., которые накопились к тому времени. В самом деле, превращение М. в совершенно непохожую на них <span class="italic">окись</span> простым прокаливанием на воздухе и обратное получение М. из окиси, выделение одних М. из других, образование сплавов, обладающих другими свойствами, чем первоначально взятые М., и проч., все это как будто должно было указывать на сложность их натуры. Что касается собственно до превращения М. в золото, то вера в возможность этого была основана на многих видимых фактах. В первое время образование сплавов, цветом похожих на золото, например из меди и цинка, в глазах алхимиков уже было превращение их в золото. Им казалось, что нужно изменить только <span class="italic">цвет</span>, и свойства М. будут другие. В особенности много способствовали этой вере плохо поставленные опыты, когда для превращения неблагородного М. в золото брались вещества, содержавшие примесь этого золота. Например, уже в конце XVIII столетия один копенгагенский аптекарь уверял, что химически чистое серебро при сплавлении с мышьяком отчасти превращается в золото. Этот факт был подтвержден известным химиком Гитоном де Морво (Guyton de Morveau) и наделал много шума. В скорости потом было показано, что мышьяк, служивший для опыта, содержал следы серебра с золотом! Так как из семи известных тогда М. одни легче подвергались превращениям, другие труднее, то алхимики делили их на благородные — совершенные, и неблагородные — несовершенные. К первым принадлежали золото и серебро, ко вторым медь, олово, свинец, железо и ртуть. Последняя, обладая свойствами благородных М., но в то же время резко отличаясь от всех металлов своим жидким состоянием и летучестью, чрезвычайно занимала тогдашних ученых, и некоторые выделяли ее в особую группу; внимание, привлекавшееся ей, было так велико, что, как увидим далее, ртуть стали считать в числе элементов, из которых образованы М., и в ней именно видели носителя металлических свойств. Принимая существование в природе перехода одних М. в другие, несовершенных в совершенные, алхимики предполагали, что в обычных условиях это превращение идет чрезвычайно медленно, целыми веками, и, может быть, не без таинственного участия небесных светил, которым в тогдашнее время приписывали такую большую роль и в судьбе человека. По странному совпадению, М. было числом семь, как и известных тогда планет, а это еще более указывало на таинственную связь между ними. У алхимиков М. часто носят название планет; золото называется Солнцем, серебро — Луной, медь — Венерой, олово — Юпитером, свинец — Сатурном, железо — Марсом и ртуть — Меркурием. Когда были открыты цинк, висмут, сурьма и мышьяк, тела, во всех отношениях схожие с М., но у которых одно из характернейших свойств металла, <span class="italic">ковкость</span>, развито в слабой степени, то они были выделены в особую группу — полуметаллов. Деление М. на собственно металлы и полуметаллы существовало еще в средине XVIII столетия.<br></p><p>Если М. тела сложные, то что же входит в их состав? В первое время алхимики принимали, что они образованы из двух элементов — ртути и серы. Как сложилось это воззрение — сказать трудно, но его мы находим уже в VIII столетия. По Geber'у доказательством присутствия ртути в М. служит то, что она их растворяет, и в этих растворах индивидуальность их исчезает, поглощается ртутью, чего не случилось бы, если бы в них не было одного общего с ртутью начала. Кроме того, ртуть со свинцом давала нечто похожее на олово. Что касается серы, то, может быть, она взята потому, что были известны сернистые соединения, по внешнему виду схожие с М. В дальнейшем эти простые представления, вероятно, вследствие безуспешных попыток приготовления М. искусственно, крайне усложняются, запутываются. В понятиях алхимиков, например Х—XIII столетий, ртуть и сера, из которых образованы М., не были теми ртутью и серой, которые имели в руках алхимики. Это было только нечто схожее с ними, обладающее особыми свойствами; нечто такое, которое в обыкновенной сере и ртути существовало реально, было выражено в них в большей степени, чем в других телах. Под ртутью, входящей в состав М., представляли нечто, обуславливающее неизменяемость их, металлический блеск, тягучесть, одним словом, носителя металлического вида; под серой подразумевали носителя изменяемости, разлагаемости, горючести М. Эти два элемента находились в М. в различном количестве и, как тогда говорили, различным образом фиксированные; кроме того, они могли быть различной степени чистоты. По Геберу, например, золото состояло из большого количества ртути и небольшого количества серы в высшей степени чистоты и наиболее фиксированных; в олове, напротив, предполагали много серы и мало ртути, которые были не чисты, плохо фиксированы и проч. Всем этим, конечно, хотели выразить различное отношение М. к единственному в тогдашнее время могущественному химическому агенту — огню. При дальнейшем развитии этих воззрений двух элементов — ртути и серы — для объяснения состава М. алхимикам показалось недостаточно; к ним присоединили <span class="italic">соль</span>, а некоторые мышьяк. Этим хотели указать, что при всех превращениях М. остается нечто не летучее, постоянное. Если в природе превращение неблагородных М. в благородные совершается веками, то алхимики стремились создать такие условия, в которых этот процесс совершенствования, созревания шел бы скоро и легко. Вследствие тесной связи химии с тогдашней медициной и тогдашней биологией, идея о превращении М. естественным образом отождествлялась с идеей о росте и развитии организованных тел: переход, например, свинца в золото, образование растения из зерна, брошенного в землю и как бы разложившегося, брожение, исцеление больного органа у человека — все это были частные явления одного общего таинственного жизненного процесса, <span class="italic"> совершенствования</span>, и вызывались одними стимулами. Отсюда само собой понятно, что таинственное начало, дающее возможность получить золото, должно было исцелять болезни, превращать старое человеческое тело в молодое и проч. Так сложилось понятие о чудесном философском камне. Что касается роли философского камня в превращении неблагородных М. в благородные, то больше всего существует указаний относительно перехода их в золото, о получении серебра говорится мало. По одним авторам, один и тот же философский камень превращает М. в серебро и золото; по другим — существуют два рода этого вещества: одно совершенное, другое менее совершенное, и это то последнее и служит для получения серебра. Относительно количества философского камня, требующегося для превращения, указания тоже разные. По одним, 1 часть его способна превратить в золото 10000000 частей М., по другим — 100 частей и даже только 2 части. Для получения золота плавили какой-нибудь неблагородный М. или брали ртуть и бросали туда философский камень; одни уверяли, что превращение происходит мгновенно, другие же — мало-помалу и проч. Эти взгляды на природу М. и на способность их к превращениям держатся в общем в течение многих веков до XVII столетия, когда начинают резко отрицать все это, тем более что эти взгляды вызвали появление многих шарлатанов, эксплуатировавших надежду легковерных получить золото. С идеями алхимиков в особенности боролся Бойль. "Я бы хотел знать, — говорит он в одном месте, — как можно разложить золото на ртуть, серу и соль; я готов уплатить издержки по этому опыту; что касается меня, то я никогда не мог этого достигнуть". После вековых бесплодных попыток искусственного получения М. и при том количестве фактов, которые накопились к XVII столетию, например о роли воздуха при горении, увеличении веса М. при окислении, что, впрочем, знал еще Гебер в VIII столетии, вопрос об элементарности состава М., казалось, был совсем близок к окончанию; но в химии появилось новое течение, результатом которого явилась флогистонная теория, и решение этого вопроса было еще отсрочено на продолжительное время. Тогдашних ученых сильно занимали явления горения. Исходя из основной идеи тогдашней философии, что сходство в свойствах тел должно происходить от одинаковости <span class="italic">начал</span>, элементов, входящих в их состав, принимали, что тела горючие заключают общий элемент. Акт горения считался актом разложения, распадения на элементы; при этом элемент горючести выделялся в виде пламени, а другие оставались. Признавая взгляд алхимиков на образование М. из 3-х элементов, ртути, серы и соли, и принимая их реальное существование в М., горючим началом в них нужно было признать серу. Тогда другой составной частью М. нужно было, очевидно, признать остаток от прокаливания М. — их землю, как тогда говорили; следовательно, ртуть тут ни при чем. С другой стороны, сера сгорает в серную кислоту, которую многие, в силу сказанного, считали более простым телом, чем сера, и включили в число элементарных тел. Выходила путаница и противоречие. Бехер, чтобы согласовать старые понятия с новыми, принимал существование в М. <span class="italic">земли</span> трех сортов: собственно землю, землю горючую и землю ртутную. В этих-то условиях Сталь предложил свою теорию. По его мнению, началом горючести служит не сера и не какое-либо другое известное вещество, а нечто неизвестное, названное им флогистоном. М. образованы из флогистона и земли; прокаливание М. на воздухе сопровождается выделением флогистона; обратное получение М. из его земли с помощью угля — вещества, богатого флогистоном — есть акт соединения флогистона с землей. Хотя М. было несколько и каждый из них при прокаливании давал свою землю, последняя, как элемент, была одна, так что и эта составная часть М. была такого же гипотетического характера, как и флогистон; впрочем, последователи Сталя иногда принимали столько элементарных земель, сколько было М. Когда Кавендиш при растворении М. в кислотах получил водород и исследовал его свойства (неспособность поддерживать горение, его взрывчатость в смеси с воздухом и проч.), он признал в нем флогистон Сталя; М., по его понятиям, состоят из водорода и земли. Этот взгляд принимался многими последователями флогистонной теории. Несмотря на видимую стройность теории флогистона, существовали крупные факты, которые никак нельзя было связать с ней. Еще Геберу было известно, что М. при обжигании увеличиваются в весе; между тем, по Сталю, они должны терять флогистон: при обратном присоединении флогистона к земле вес полученного М. меньше веса земли. Таким образом выходило, что флогистон должен обладать каким-то особенным свойством — отрицательным тяготением. Несмотря на все остроумные гипотезы, высказанные для объяснения этого явления, оно было непонятно и вызывало недоумение. Когда Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе М. при обжигании происходит от присоединения к М. кислорода воздуха, и таким образом установил, что акт горения М. есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности М. был решен отрицательно. М. были отнесены к простым телам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. Этого взгляда химия держится поныне. <span class="italic"><br><p>Металлоиды.</p></span> Как мы видели, одна часть простых тел образует группу М.; по предложению Берцелиуса, остальные простые тела тоже объединены в одну группу, и он дал им название металлоидов. Основанием для этого объединения были электрохимические воззрения Берцелиуса. Он представлял атомы тел биполярными и принимал, что количество электричества на обоих полюсах может быть разное, так что атом в общем мог быть заряжен положительно или отрицательно. В разных телах количество электричества в атомах предполагалось разное. При соединении различных атомов происходила или полная нейтрализация их электричеств, или частная, так что частица сложного тела или нейтральна, или заряжена известным образом. Из соединения атом, сильнее заряженный, например, положительно, мог вытеснять другой такого же рода, слабее заряженный, и проч. Подробности см. Электрохимия. При электролизе М. выделяются на отрицательном полюсе, а остальные тела (сами по себе или в соединении с кислородом) — на положительном; следовательно, можно было себе представить, что частицы М. заряжены положительным электричеством, а других тел — отрицательным, это и есть общее в натуре металлоидов, что, по Берцелиусу, и сказывается в их свойствах и дает возможность соединить их в одну группу. Представляя химическое сродство как влияние двух электричеств, становилось понятно, что тела разных групп вообще будут легче соединяться и давать более прочные соединения, чем одной и той же, и т. п. Для характеристики металлоидов указывалось, что если М., соединяясь с кислородом, вообще дают основные окислы электроположительные, то металлоиды дают вообще кислотные — электроотрицательные. Разделяя простые тела на две группы — М. и металлоидов, — еще Берцелиус указывал, что между ними существует крайне постепенный переход, так что на границе этих групп трудно сказать, имеем ли мы дело с М. или металлоидом. Например, мышьяк или даже марганец с удобством могут быть отнесены как в ту, так и в другую группу. После падения электрохимической теории исчезло основание, в силу которого неметаллы были соединены в одну группу. С другой стороны, с открытием новых элементов самое решение вопроса, имеется ли дело с М. или нет, на основании определений М. древних, стало крайне затруднительным, хотя во всяком случае понятие о М., выработанное веками, имеет такой же raison d' ê tre, как и понятие о щелочах, кислотах и солях. Если до сих пор делят простые тела на М. и металлоиды, то это делается в силу привычки или для удобства изложения при преподавании химии. <span class="italic"><br><p>С. П. Вуколов. </p></span>Δ <span class="italic">. </span><br></p>... смотреть

МЕТАЛЛЫ И СПЛАВЫ

охватывают следующие необработанные и полуфабрикатные формы: необработанные формы - аноды, шары, полосы (включая отрубленные полосы и проволочные полосы), металлические заготовки, блоки, стальные болванки, брикеты, бруски, катоды, кристаллы, кубы, стаканы, зерна, гранулы, слитки, глыбы, катыши, чушки, порошок, кольца, дробь, слябы, куски металла неправильной формы, губка, прутки; полуфабрикатные формы (независимо от того, облицованы, анодированы, просверлены либо прессованы они или нет): а) определенной формы или обработанные материалы, полученные путем прокатки, волочения, горячей штамповки выдавливанием, ковки, импульсного выдавливания, прессования, дробления, распыления и размалывания, а именно: угольники, швеллеры, кольца, диски, пыль, хлопья, фольга и лист, поковки, плиты, порошок, изделия, обработанные прессованием или штамповкой, ленты, фланцы, прутки (включая сварные брусковые прутки, проволочные прутки и прокатанные проволоки), профили, формы, листы, полоски, трубы и трубки (включая трубные кольца, трубные прямоугольники и полостные трубки), тянутая или экструдированная проволока; б) литейный материал (отливки), полученный литьем в песке, матрице, металле, пластике или других типах материалов, включая литье под высоким давлением, "шлаковые формы" (оплавляемые модели) и формы, полученные с помощью порошковой металлургии. ... смотреть

МЕТАЛЛЫ ЛЕГКИЕ

жеңіл металдар

МЕТАЛЛЫ ЛЕГКИЕ

— иногда под этим назв. объединяют Аl и Mg.Геологический словарь: в 2-х томах. — М.: Недра.Под редакцией К. Н. Паффенгольца и др..1978.

МЕТАЛЛЫ ЛЕГКОПЛАВКИЕ

оңайбалқығыш металдар

МЕТАЛЛЫ МАЛЫЕ

— уст. групповое наименование для таких металлов, как Sn, W, Mo, Sb, Hg и некоторые др., обычно относимые теперь к редким металлам.Геологический словар... смотреть

МЕТАЛЛЫ ОРГАНИЧЕСКИЕ

, орг. соед., обладающие металлич. проводимостью. В М. о. перенос электрона в твердой фазе осуществляется по орг. компоненте молекулы. М. о. наз. ... смотреть

МЕТАЛЛЫ ПЕРВИЧНЫЕ

алғашқы металдар

МЕТАЛЛЫ ПЕРЕХОДНЫЕ

өтпелі металдар

МЕТАЛЛЫ ПЛАТИНОВЫЕ

платиналық металдар

МЕТАЛЛЫ ПЛАТИНОВЫЕ

• металлы m pl платиновые english: platinum metals deutsch: Platinmetalle n pl français: platinoïdes m pl

МЕТАЛЛЫ РАДИОАКТИВНЫЕ

радиобелсенді металдар

МЕТАЛЛЫ РАССЕЯННЫЕ

шашыраңқы металдар

МЕТАЛЛЫ РАССЕЯННЫЕ

• металлы m pl рассеянные english: trace metals deutsch: gestreute Metalle n pl français: métaux m pl dispersés

T: 370