" ( - 1 2 3 4 5 7 8 B E G K L N O P S T А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я 
ЛАЗЕР
(LASER, аббревиатура слов англ, фразы Light Amplification by Stimulated Emission of Radiation - усиление света в результате вынужденного излучения), устройство, преобразующее разл. виды энергии (электрич., световую, хим., тепловую и др.) в энергию когерентного электромагн. излучения. В основе работы Л. лежит процесс вынужденного испускания электромагн. излучения (фотонов) атомами и др. квантовыми системами, находящимися в возбужденных состояниях. Так, атом, находящийся в состоянии 2 с энергией W2, может перейти в состояние 1 с меньшей энергией Wl, испустив при этом фотон с частотой v21=(2 ЧW>1)/h, где h-постоянная Планка (рис. 1). Излучат. переход может произойти как самопроизвольно (спонтанное испускание), так и под действием внеш. электромагн. излучения (вынужденное, или индуцированное, испускание). При спонтанном испускании частота v фотона может отличаться от v21 в нек-рых пределах Dv л, т. к. в реальной квантовой системе энергетич. уровни не строго дискретны, а занимают нек-рые
541_560-55.jpg
Рис. 1. Энергетич. уровни квантовой системы, используемой в качестве активной среды лазера. DW2 и DW1 - ширины энергетич. состояний 2 и W1,обычно определяемые по полуспаду плотности состояний. Показаны переходы, соответствующие поглощению и испусканию фотона hv.

интервалы энергии DW2 и DW1. Контур спектральной линии спонтанного излучения описывается плавной кривой S(v, v21) (pис. 2); направление распространения излучения и фаза произвольны.
541_560-56.jpg
Рис. 2. Спектральная линия активной среды лазера. S(v, v21) -относит. число спонтанно испущенных фотонов на частоте v'; v21 - резонансная частота, Dv л - полуширина спектральной линии.

При вынужденном испускании фотоны неотличимы от внеш. фотонов, воздействующих на систему. В частности, если воздействующее излучение монохроматично (частота v') и имеет определенное направление распространения, индуцир. излучение имеет ту же частоту v' и то же направление распространения. Вероятность вынужденного испускания зависит от частоты v' воздействующего излучения: она пропорциональна фактору S(v', v21) и имеет значение тем большее, чем ближе v' к резонансной частоте v21. Важным является то обстоятельство, что вероятность вынужденного испускания пропорциональна интенсивности воздействующей волны (плотности фотонов). При обратном переходе 1:2 происходит поглощение фотона атомом на той же частоте v12, вероятность к-рого также пропорциональна плотности фотонов воздействующей волны и фактору S(v, v12). Поэтому преобладание вынужденного испускания над поглощением возможно лишь при выполнении условия: N2/g2>N1/g1, где N2 и N1 - населенности состояний 2 и 1 соотв. (числа атомов в единице объема в-ва, находящихся на энергетич. уровнях 2 и 1), g2 и g1 - статистич. веса этих состояний. При термодинамич. равновесии всегда N2/g2l/gl, поэтому условие N2/g2-N1/gl>0, наз. инверсией населенности, м. б. обеспечено лишь в термодинамически неравновесной системе. Этого достигают накачкой - подводом к системе энергии и созданием термодинамически неравновесного распределения частиц по энергетич. уровням системы. В-во, в к-ром создана инверсия населенности, наз. активной средой (активным в-вом). В Л. отдельные акты вынужденного испускания превращ. в генерацию когерентного электромагн. излучения благодаря положит. обратной связи, при к-рой один испущенный фотон многократно вызывает новые акты вынужденного испускания точно таких же фотонов. Первоисточником волны являются спонтанно испущенные фотоны, из к-рых наиб. число имеют резонансную частоту v21; под их воздействием начинается индуцир. испускание на той же частоте. Постепенно фотоны с частотой v2l станут доминировать над всеми остальными, т. е. система начнет излучать монохроматич. электромагн. волну. Описанная обратная связь в Л. осуществляется с помощью резонатора. Простейший резонатор для излучения в оптич. диапазоне представляет собой два зеркала, между к-рыми помещается активная среда. Одно из зеркал делается частично прозрачным для выхода части излучения, используемого потребителем. Остальное излучение отражается от зеркала и вновь возвращается в активную среду, вызывая новые индуцир. переходы. В результате происходит увеличение интенсивности волны - усиление. Для того чтобы усиление в активной среде скомпенсировало отвод из резонатора части излученной энергии, значение инверсной разности населенностей DN=N2/g2-N1/gl должно превышать определенное пороговое значение DN П, к-рое зависит от длины L активной среды между зеркалами, коэф. отражения r частично прозрачного зеркала и сечения а резонансного квантового перехода согласно соотношению:
DN П=(l/sL)lnl/r (1)
Как правило, в пределы Dv П спектральной линии активного в-ва может попадать неск. резонансных частот (резонансных мод) резонатора (рис. 3), главные из к-рых
541_560-57.jpg
Рис. 3. Спектральная линия активной среды лазера и моды (резонансные частоты) оптич. резонатора.

отделены друг от друга частотным интервалом Dv=c/2L, где с - скорость света в активной среде. Поэтому Л. генерирует не одну частоту v0~v21, а набор частот vj=v0+jc/2L (j - целое число), к-рые определяют спектр лазерного излучения. С отстройкой частоты излучения от резонансного значения уменьшается вероятность индуцир. перехода и возрастает пороговая инверсная населенность.
541_560-58.jpg
Рис. 4. Простейшая схема лазера: 1 - активная среда; 2 - непрозрачное зеркало; 3 - частично прозрачное зеркало, через которое осуществляется вывод генерируемого излучения; 4 - система накачки (здесь - газоразрядные лампы).

Т. обр., Л., работающий как генератор когерентного излучения, должен состоять из трех компонентов (рис. 4): системы накачки - устройства, поставляющего энергию в Л. для переработки ее в когерентную волну; активной среды, к-рая вбирает в себя энергию накачки и переизлучает ее в виде когерентного излучения, и резонатора, осуществляющего обратную связь. Л. может работать и как усилитель когерентного излучения. В этом случае обратная связь не обязательна, волна просто распространяется по активной среде, увеличивая свою мощность (энергию). Размножение фотонов в резонаторе Л. и выход части из них через полупрозрачное зеркало можно рассматривать как разветвленную цепную р-цию рождения фотонов при индуцир. переходах и их адсорбцию на пов-сти зеркала Z с коэффициентом (1Чr) при каждом столкновении:
541_560-59.jpg
где А * и А - возбужденные частицы в состояниях, между к-рыми происходит квантовый переход, n-число частиц в единице объема резонатора. Если процесс накачки представить как превращ. А в А * вследствие передачи энергии при столкновении с нек-рыми условными частицами Q:
541_560-60.jpg
а релаксацию энергии возбуждения - как гибель возбужденных частиц А * при столкновении с условными частицами М:
541_560-61.jpg
то работу Л. можно описывать кинетич. ур-ниями как изменение за время t в резонаторе числа фотонов dn/dt и изменение за время t концентраций частиц d[А *]/dt и d[А]/dt:
dn/dt+kZn=Bn([А *]/g*-[А]/g); d[А *]/dt+k М[М][А *]-Bn([А *]/g*-[А]/g)=kQ[Q][A]; (6) d[А]/dt-k М[М][А *]+Bn(A*]/g*-[А]/g)=-kQ[Q][A],
где g и g* - статистич. веса соответствующих состояний; B, kZ, kQ и kM - константы скорости процессов (2), (3), (4) и (5) соответственно. Их значения легко связать с сечением s, параметрами резонатора L и r, св-вами активного в-ва, способом накачки; тогда ур-ния (6) выражают осн. энергетич. соотношения при генерации Л. когерентного излучения. Они позволяют применять для расчетов методы, разработанные для нелинейных хим. процессов (см. Неравновесная химическая кинетика).
Накачка Л. Создание в активном в-ве инверсии населенности производится разными способами. Чаще всего используют воздействие на в-во электромагн. излучения (оптич. накачка), электрич. разряда, пучка электронов с энергией от неск. десятков эВ до МэВ (электронный удар), высокотемпературный нагрев в-ва с послед. быстрым охлаждением (тепловая накачка), экзотермич. хим. р-ции в в-ве, инжекцию носителей заряда в область р-n- перехода в полупроводнике под действием электрич. поля. Рассмотрим нек-рые способы накачки. Оптич. накачку осуществляют чаще всего с помощью газоразрядных ламп в импульсном или непрерывном режимах работы. Поскольку их излучение имеет широкий спектр, в качестве активной среды необходимо применять материалы с широкими полосами поглощения. Однако с ростом ширины спектральной линии уменьшается сечение а и потому трудно достичь пороговых значений DN П, согласно (1). Задачу решают для разл. активных сред по-разному. Рассмотрим, напр., схему накачки рубинового Л., в к-ром для создания инверсной населенности используют энергетич. уровни иона Сr3+, внедренного в решетку корунда a-Аl2 О 3 (рис. 5). В результате поглощения излучения hv31 широкополосной газоразрядной лампы ионы Cr3+ переводятся из основного состояния 1 в возбужденное состояние 3, представляющее собой довольно широкую полосу энергетич. уровней. Затем сравнительно быстро происходит передача части энергии возбуждения решетке кристалла и безызлучат. переход Сr3+ в состояние 2, из к-рого самопроизвольный переход в основное состояние 1
541_560-62.jpg
Рис. 5. Принципиальная схема энергетич. уровней рубина. Стрелками вверх указано поглощение энергии накачки hv31, стрелками вниз - безызлучат. переходы. Двойная линия - лазерный переход на частоте v2l.

происходит сравнительно медленно (время жизни возбужденного состояния t21~10-3 с). Инверсия населенности возникнет, если в состоянии 2 окажется более половины всех ионов Сr3+ . При концентрации N2 ионов Сr3+ в кристалле порядка 1019 см -3 это достигается, если энергия, поглощаемая за 1 с в 1 см 3 рубина (уд. мощность накачки), составляет Р уд=hv3lN2t-121]103 Вт/см 3. Сечение s перехода 2:1 в рубине таково, что для генерации когерентного излучения на длине волны 0,69 мкм достаточно выполнения условия: (N2/g2-N1/g1)~1017 см -3 при длине кристалла ~10 см и коэффициенте r ~90%. На практике применяют кристаллы рубина, представляющие собой цилиндрич. стержни длиной 10-30 см и диаметром ~ 1 см. Аналогична схема накачки для Л. на основе стекол и иттрий-алюминиевого граната, активированных Nd, и нек-рых др. твердотельных Л., в к-рых для создания инверсной населенности используют энергетич. уровни примесных ионов. Оптич. накачку применяют также в Л. на красителях (жидкие активные среды) и ряде др. Др. схема оптич. накачки основана на том, что при поглощении широкополосного спектра излучения происходит фотолиз молекул с появлением радикалов и возбужденных атомов, последние и образуют активную среду Л. Напр., при фотолизе молекулы C3F7I под действием УФ излучения с длиной волны 200-250 нм возникает возбужденный атом I в состоянии 3 Р 1/2
C3F7I+hv уф3 Р 7+I(3P1/2)
При переходе атома I в состояние 3 Р 3/2 излучается фотон с длиной волны 1,315 мкм:
I(3P1/2)+nhv:(n+l)hv+I(3 Р 3/2)
Электронный удар применяют в осн. для накачки газовых Л. Накачка основана на возбуждении атома при его соударении с электроном, обладающим достаточно большой кинетич. энергией. Напр., в He-Ne-Л. происходят след. процессы (рис. 6):
He(11S)+е:Не 3+е, He(11S)+е:Не ++2e,
где l1S - осн. состояние атома Не, а Не * - одно из его возбужденных состояний. Релаксация энергии возбуждения и рекомбинация ионов с электронами протекают в этой системе таким образом, что возбужденные атомы Не B скапливаются на метастабильных уровнях 21S и 23S. Инверсная населенность получается при передаче энергии возбуждения от Не к Ne, уровни к-рого 3S и 2S близки по энергии к 21S и 23S уровням Не:
He(21S)+Ne(lS):Не(11S)+Ne(3S) He(23S)+Ne(lS):He(l1S)+Ne(2S)
Переходы 3S:3P, 3S:2P или 2S:2P в Ne используются для генерации когерентного излучения на длинах волн 3,39, 0,63 или 1,15 мкм соответственно.
541_560-63.jpg
Рис. 6. Схема электронных уровней Не и Ne, используемых для нахачкя. Не - Ne - лазера электронным ударом в газовом разряде.

Электронный удар применяют также для накачки СО 2 -и СО-лазеров, Л. на парах металлов, эксимерных (точнее, эксиплексных), а также нек-рых полупроводниковых Л. Тепловая накачка Л. происходит при быстром охлаждении сильно нагретых газовых смесей. При надлежащем подборе компонентов смеси удается найти такие системы энергетич. уровней частиц, в к-рых нижележащие уровни "охлаждаются" (опустошаются) быстрее, чем вышележащие. Это приводит к образованию инверсной населенности. Практически наиб. удобный способ охлаждения - сверхзвуковое истечение газов через сопло; наиб. удачные активные среды-смеси N2-CO2-He и N2-CO2-H2O. Л. с тепловой накачкой на этих активных средах наз. тепловыми газодинамич. Л. О химической накачке см. Лазеры химические. Инжекция носителей тока через p-n-переход - осн. способ накачки полупроводниковых Л. Активная среда представляет собой кристалл-полупроводник, состоящий из областей р-и n-типа (рис. 7). Между этими областями возникает контактная разность потенциалов, уравновешивающая потоки носителей из одной части в другую;
541_560-64.jpg
Рис. 7. Инжекционный полупроводниковый лазер. Область потенциального барьера (p-n-перехода) заштрихована. (+) и (-) - контакты для приложения напряжения. Лазерное излучение hvнаправлено перпендикулярно плоскости рисунка (волнистая линия со стрелкой).

электрич. ток через контакт равен нулю. Если к образцу приложить электрич. напряжение, равное по величине контактной разности потенциалов, возникнут потоки носителей навстречу друг другу и их рекомбинация с испусканием фотонов. Зеркалами оптич. резонатора в таком Л. служат хорошо отполированные плоскопараллельные грани самого кристалла. наиб. совершенные инжекционные Л. представляют собой более сложную структуру (гетероструктуру). Важная особенность инжекционных Л. -их миниатюрность; длина активной зоны обычно неск. мм, рабочая часть p-n-перехода имеет размеры в направлении протекания тока ~1 мкм, поперечный размер - обычно 1 мм. Типы Л. и их применение. Л. можно классифицировать по типу активной среды (твердотельные, в т. ч. полупроводниковые Л., газовые, Л. на жидких красителях и т. п.), по способу накачки или по др. признакам, однако ни одна из таких классификаций не является однозначной. По совокупности нек-рых признаков (тип среды, способ накачки, режим работы, мощность генерируемого излучения и др.) удобно выделить след. Л.:
1. Твердотельные Л. на стеклах и иттрий-алюминиевом гранате (ИАГ-Л.), активированных Nd (длина волны генерируемого излучения l=1,06 мкм), рубиновые Л. (l=0,69 мкм). Используют оптич. накачку с помощью газоразрядных ламп; возможна работа Л. в импульсном и импульсно-периодич. режимах (стекла и рубин; для ИАГ-Л. возможен и непрерывный режим работы). Энергия, генерируемая в режиме одиночных импульсов длительностью до 10-3 с, может достигать 103 Дж за импульс с одного стержня стекла, активированного Nd. Уникальные установки на этом материале могут генерировать до 100 кДж за импульс длительностью 10-9 с. Мощность ИАГ-Л. в непрерывном режиме может достигать сотен Вт.
2. Электроразрядные Л. низкого давления на смесях благородных газов (He-Ne, Не-Хе и др.). Маломощные системы, генерирующие излучение высокой монохроматичности и направленности. наиб. применение получил He-Ne-Л. (l=0,628 и 3,39 мкм).
3. Полу проводниковые Л. Накачка инжекцией носителей тока через р-n-переход или гетеропереход, а также облучением пов-сти полупроводника электронным пучком. Возможна и оптич. накачка, хотя широкого распространения полупроводниковые Л. с оптич. накачкой не получили. Инжекционные Л. миниатюрны, имеют большой кпд, могут работать в импульсном и непрерывном режимах. На основе твердых р-ров, напр. системы Ga|In|Ar|Sb, можно получить излучение в дальнем, среднем и ближнем ИК диапазонах (длина волны от 0,6 до 6 мкм). Л. с электронной накачкой генерируют излучение в ближнем ИК и во всем видимом диапазонах.
4. N2-CO2 и N2 -СО-Л. (l=9-11 мкм для СО 2 и 5-6 мкм для СО). Накачка электрич. разрядом, практически достижимая мощность излучения в непрерывном режиме - более десятка кВт; возможны также импульсный и импульсно-периодич. режимы работы.
5. Ионный аргоновый Л. непрерывного действия (l=488 и 514 мкм). Накачка электрич. разрядом, мощностью до неск. десятков Вт.
6. Л. на парах металлов (Сu, Cd, Se, Sn и др.) в смеси с Не. Накачка электрич. разрядом. наиб. перспективен медный Л. (l=510нм); режимы работы - импульсно-периодич. и непрерывный; мощность излучения - дeсятки Вт.
7. Эксимерные Л. на смеси благородных газов с фтором, хлором, фторидами. Накачка сильноточным электронным пучком или поперечным электрич. разрядом. Генерирует излучение в УФ диапазоне, режим работы импульсный.
8. Фотодиссоциационные Л. наиб. распространение получил йодный Л. (l=1,315 мкм), работающий в режиме мощных одиночных импульсов.
9. Л. на жидких красителях; накачка оптическая с помощью газоразрядных ламп или Л. др. типов. Главное преимущество перед др. типами Л. - возможность плавной перестройки частоты в широком диапазоне.
10. Хим. Л. со смесью газов в качестве активной среды. Генерируется излучение широкого спектра в ближнем ИК диапазоне. Осн. преимущество - возможность получения непрерывного излучения больших мощностей (сотни кВт) и энергий в импульсе (десятки кДж).
11. Газодинами ч. Л. с тепловой накачкой. Осн. рабочая смесь - N2-CO2 -Не или N2 - СО 2 - Н 2 О; излучающая молекула - колебательно возбужденный СО 2; возможно получение мощностей излучения порядка сотен кВт. Разработаны Л. с излучающими молекулами СО, CS2, N2O.
12. Л. на своб. электронах. Перспективная система, широко обсуждаемая в литературе; практически используемых систем в оптич. диапазоне пока нет.
13. Л. рентгеновского диапазона. Пока разработаны только лаб. варианты с генерированием излучения l~20 нм.
14. Гамма-лазеры на ядерных переходах пока не осуществлены. Применение Л. чрезвычайно широко и определяется св-вами генерируемого излучения. Так, большая частота (в сравнении с радиодиапазоном) и высокая монохроматичность излучения обеспечивают возможность передачи на большие расстояния по световодам больших объемов информации. Предполагается, что лазерно-волоконная связь станет в ближайшем будущем доминирующей. Используют в осн. полупроводниковые Л. На высокой когерентности лазерного излучения основано применение Л. для получения объемных изображений (голография). Большие мощности излучения в непрерывном и импульснопериодич. режимах и возможность фокусировки лазерного луча в пятно требуемого размера обусловливают использование Л. для резки и сварки материалов, обработки и закалки пов-сти. Используют в осн. твердотельные Л. на люминесцирующих средах, газовые Л. высокого давления (N2-CO2 и N2-CO), газодинамич. Л. с тепловой накачкой. Быстро расширяется применение Л. в медицине, гл. обр. в офтальмологии (для приварки сетчатки глаза и при др. операциях), в хирургии - в качестве скальпеля, что особенно эффективно при операциях на кровенасыщенных органах; для стерилизации ран; для эндоскопии внутр. органов и остановки внутр. кровотечений. Используют в осн. Л. рубиновые, аргоновые, на парах меди, иттрий-алюминиевом гранате, N2-CO2. В метрологии Л. используют для создания единого оптич. стандарта длины - времени. В частности, с помощью спец. образом стабилизированного по частоте He-Ne-Л. удалось на два порядка улучшить точность измерения длины по сравнению с криптоновым эталоном. Применяют Л. для управления хим. и биол. процессами (см. Лазерная химия), для зондирования атмосферы, в вычислит, технике для записи и считывания информации, в быту - в звукои видеовоспроизводящих устройствах высокого качества. Революционизирующее влияние оказало применение Л. в разл. областях науки. На принципиально новую основу поставлена спектроскопия (см. Лазерная спектроскопия), появились новые области науки и техники-нелинейная оптика, оптоэлектроника, интегральная оптика. Разрабатываются способы изотопов разделения с использованием Л. на красителях, N2 -СО 2 -Л. и ряда других, системы для проведения экспериментов по лазерному термоядерному синтезу (ЛТС). Лит.: Квантовая электроника, М., 1969 (сер. Маленькая энциклопедия); Справочник по лазерам, иод ред. А. М. Прохорова, пер. с англ., М., 1978; О'Шиа Д., Коллсн Р.. Роде У, Лазерная техника, пер. с англ., М., 1980. А. Н. Ораевский.


Синонимы:
луч, нанолазер, хемолазер




Химическая энциклопедия  2018

← ЛАДЕНБУРГА РЕАКЦИЯЛАЗЕРНАЯ СПЕКТРОСКОПИЯ →

Смотреть значение "ЛАЗЕР" в других словарях:
T: 0.238129044 M: 6 D: 1